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Abstract 

This paper tackles the issue of describing and analyzing complex evolving systems for practical 
purposes. At variance with other definitions of “complex system”, which usually focus on agents 
that show a spontaneous capacity of self organization and adaptation, the systems considered in this 
paper are those which the observer describes focusing only on the interactions occurring between 
any set of agents. The approach to the subject is of a probabilistic nature, while the use of 
mathematics aims also at stressing the determinant influence of human languages in observing 
events as well as the context of their occurrence. 

The contents of this paper re-propose – in a more concise form – a theory I have expounded first 
in 1988 in a volume titled “L’evoluzione sintropica dei sistemi urbani” 2, published in Italian 
language only. Still today, as it was at that time, a related issue is the practical difficulty of 
displaying the theory properly in the size and format of a paper to be sent for publication to 
specialized magazines. The contents of the theory cannot conveniently be compressed in a paper, 
however reasonably long the paper may be. Despite this conviction of mine, I have tried (albeit 
without noticeable success) to communicate also through the publication of relevant papers in 
English, both in the Internet,3 and in one international conference4, trying to make the theory escape 
the communication boundaries imposed by the use of Italian language. I am trying hereby again. 

During my professional activity spent across the world, I have had a few opportunities to test the 
viable application of the theory to the solution of real problems. Thus, while aging, the theory has 

                                                            
1 Mario Ludovico was born in Rome in 1936, where he graduated in Architecture, with a doctorate thesis in 
Regional Planning. After a few years spent at La Sapienza University of Rome as a researcher and lecturer, 
he devoted almost forty years to his activity of independent professional, performing in countries of five 
continents at request of either the respective governments or international financing and aid institutions. 
In 1988 the Italian government awarded him the Prize of Culture for one of his books, in which he 
expounded the theory that is more concisely re-proposed in English in this paper. On various occasions, 
sections of the theory have been applied for coping with regional planning problems. E-mail; 
mario.ludovico@tin.it  
2  Bulzoni Publisher, Roma 1988 (1st  edition) and 1991 (2nd edition) 
3 www.mario-ludovico.com/pdf/syntropy.pdf, (2005); Syntropy: Definition and Use, online magazine 
“Syntropy Journal” (www.syntropy.org/journal, 2008).  
4 Towards a Complex Systems Economics, Simon Kuznets International Symposium in Kiev, Ukraine, 25-
28 May 2011, Proceedings. 
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been corroborated by experience. Perhaps, this is an additional reason why I deem it worth trying 
again a better diffusion of the theory through the publication of this rather long paper in English. 

 Nevertheless, the theory remains only one of the many rationalizing attempts whose fate is – 
because of the intrinsic nature of the subject addressed – to gravitate still out of the perimeter of 
science. In this connection, another reason for recalling attention to this way of modelling complex 
evolving systems is the (probably vain) attempt to oppose the overwhelming fashion of 
computational simulations, which are increasingly encroaching on the hard beaten field of more 
consistent researches that strive to understand complex systems. Skilled and well equipped 
computer programmers can help simulate anything and “prove” any arbitrary theory. 

In my opinion, whatever the destiny of works like this one, any self-consistent theory must be 
based on a coordinated set of clear and appropriate fundamental concepts, accurately defined and – 
as far as possible – unambiguously expressed and developed. This should be the main purpose of 
availing oneself also of mathematical language.  

   
This paper is not an easy reading, and it is certainly boring, as it is of most theoretical works. 

The interested reader should persevere at least through the first three chapters, before obtaining - in 
the fourth chapter - a significant picture of the theory and of its possible use. What I can do in return 
for any generous intention to undertake such an effort is only to assure the reader that this paper is 
not one of the many commentaries on theories and ideas expressed by other authors about subjects 
of the kind, but the re-presentation of a substantially original theory. 
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Introduction 
 
Who decides to read a paper like this is either somehow familiar with the subject at which the 

title of this paper hints or is an educated beginner that has been charmed by terms like complex 
systems, emergence, self-organizing and adaptive systems, evolution and other akin terms. Such 
terms have since decades projected new hopes and ambitions on the screen of our imagination, 
though – regrettably – have favoured the rise of novel illusions rather than the development of the 
human knowledge about effective means of control on complex phenomena of the real world. 

The definition of “complex and adaptive system” is the prime subject of discussion, which this 
paper faces in its first chapter. A commonly shared idea is that complex systems are characterized 
by a large number of interacting agents whose actions, in consequence of a self-organizing 
collective behaviour, lead to emerging states of the system, which are difficult or impossible to 
predict on the basis of the agents’ individual behaviour. The concept of “agent” is quite general, as 
it may regard either the individual active components or particular sets of active components that 
form a system. Moreover, in complex adaptive systems most of the individual behaviours are not 
subjected to a central control. 

The long lasting fashionable rush of many scholars and students towards charming horizons, 
above which shines also a constellation of theories on complex systems, has found a fertile ground 
and a powerful thrust in the wonderful and explosive development of both computer technology and 
computational languages.  

Once again, it has been possible to philosophers – professionally entangled in the sphere of 
conceptual complexity – to claim their way to access and manage “positive science” at a level 
appropriate to their own conceptual world, after the severe frustration undergone by ambitious 
“non-natural” (or “pseudo-natural”) philosophies developed between the XVIII and XX centuries. 

Also in a text on complex and adaptive systems, an “academically correct” habit would require a 
scholarly review of the relevant literature produced during recent decades. Regrettably, this paper is 
not academy based, and does not claim to exhibit “scientific” stuff in search for academic 
acceptance. To the contrary, the theory expounded in this essay is substantially based on many 
years of professional experience gained on the field and in various continents, after vain initial 
attempts to avail myself of valuable academic theories in outlining solutions to serious complex 
problems met in the real world.5 The theory of this essay aims only at suggesting a practical method 
for coping with decision problems inherent in planning or management or governmental activities. 

Therefore, I limit myself to a few quick remarks on fashionable theories and models that concern 
the subject. 

The recent amazing development of computational languages and the powerful control on the 
performances of computers can nowadays – and even more in the near future – allow anyone to 
represent anything in the desired way. We live in the era of computational simulations. 

Think, for instance, of the possibility of creating a complete movie fiction story by use of 
computer only. Together with all the necessary and useful input data for the computer work, one 
might even use, as an additional input to be processed, the photographic images of one’s family 
members as well as the images of one’s neighbours plus those of the local shop/market keepers and 
local municipal agents, together with the images of the relevant residential area and of crowds of 
“anonymous people”, to produce “documentary” movies telling different possible stories, according 

                                                            
5 A valuable proto-example of comprehensive theory on systems is in the book General System Theory. 
Foundation, Development, Applications, (George Braziller Inc., New York, 1967), by Ludwig von 
Bertalanffy (Austrian biologist, 1901-1972). The book is often unfairly neglected. However, also in that 
theory it seems difficult to find practical methods for the study of real complex systems. Bertalanffy’s 
renown bio-growth equation seems seriously questionable too. 
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to different particular initial conditions as well as future hypothesized conditions. There is little to 
doubt: any person could show – for example – that an increasing amount of foreigners immigrated 
from abroad to the area where the person lives (or, alternatively, an increasing diffusion of 
unemployment) causes a massive displacement of families settled there, if these are (amongst 
innumerable other ones) the theses the person would like to prove. It seems difficult denying the 
persuasive effect on the addressed audience.  

Such actual possibilities should be viewed as a clear indication of the misleading potentials of 
computational simulations and – therefore – as a warning to all those who incline to trust the 
reliability of the computational approach to the study of any kind of “complex system”. As an 
academic “scientist”, however, one would refrain from using movie images, not only to avoid 
unnecessary high costs, but also in the awareness that – from an academic standpoint – the results of 
his computational modelling would appear more science-like and credible if presented through 
orderly sets/sequences of numeric figures, mathematical formulas and appropriate diagrams.  

The computational approach through movie images is instead more frequently preferred in 
cosmological and climate simulations, in the attempt to make rather arbitrary theories more 
credible.  

What is clear is that wherever scientific experimentation and relevant replicable experimental 
check is impossible – i.e., in absence of a scientific support - computational simulations can provide 
theories of any kind with a consolatory performance together with brilliant exposition and 
propaganda means. 

“Often, tools get mistaken for theories with unfortunate consequences; elaborate computer 
programs (perhaps with lovely graphics) or mathematical derivations are occasionally assumed to 
take a scientific statement, regardless of their scientific underpinnings. Indeed, entire literatures 
have undergone successive refinements and scientific degradation, during each generation of which 
the original theoretical notions driving the investigation are crowded out by an increasing focus on 
tool adeptness. This often results in science that is smart but not wise”. 6 

As a simple conclusion, I wish soon to remark that the unpredicted advances in computational 
languages and computer performances have also brought about an effect which is the opposite of 
the expected one: Instead of making us aware of the determinant (and often misleading) constraints 
imposed by human languages on the human effort to understand the real world, many of us do now 
take the performances of our languages as the real behaviour of the world around and inside us. It 
seems to me that it is an additional triumph of metaphysics (and self-deception) over scientific 
knowledge. 

Of a minor impact on the large public, but still a reason for pride with many scholars devoted to 
“complex systems”, is an ample set of specific mathematical methods that are used for various 
particular purposes, especially in the variegated field of the so called “operational research”. Such 
methods have undergone an important development with the development of mathematics applied 
to the self-correcting or self-controlling mechanisms that are activated through complicated feed-
back systems. The showiest results of this particular mathematical and industrial technology is in 
the field of robotics, while a number of other systematic theories, such as those concerning graphs, 
thermodynamics, dynamical systems, stochastic processes, games, fractals, catastrophes, chaos, 
networks of various kinds, etc., can usefully be applied to some complex real world aspects, with a 
view to carrying out schematic objective analyses and making calculable predictions. 

                                                            
6 John H. Miller, Scott E. Page, Complex Adaptive Systems. An Introduction to Computational Models of 
Social Life, Princeton University Press, 2007, pp. 4-5. The book’s pages are often ornamented with smart 
and wise sentences like that one. Pity, however, I could find there neither smart nor persuasive application 
examples of computational models of complex adaptive systems. 
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Most of the models drawn from the above mentioned mathematical theories regard the way in 
which different complex systems may achieve equilibrium states or transform their structure into a 
different one.   

A major limit of this kind of approach in addressing biological and socio-economic systems 
consists in forcing the features of the observed real world into the pre-made conceptual schemes 
proper to the theories applied, in order to make the relevant equations and algorithms usable. In 
most cases, pre-made mathematical models can be applied to very particular and limited aspects of 
the study subject, so as to avoid the implication of higher degree of complexity inherent in the same 
subject. 

Intrinsic additional limits of some mathematical models are in their deterministic vision of the 
study issue, whereas the data used for representing large socio-economic and biologic systems are 
generally of a stochastic nature. 

Usually, deterministic models of complex systems require the adoption of a number of 
“constant” parameters, which are in most cases of difficult determination and often sources of 
incorrigible ambiguity as to the significance of the models’ performance. A slight change in the 
value of some – or one only – of such constants may surprisingly twist the performance of the 
model from one application to another, coeteris paribus.  

Just as one example, amongst an ample variety of possible examples, consider the theory of the 
random Boolean networks. (Despite the word “random” the theory is of a deterministic kind). It’s a 
theory that – to some extent - can usefully represent dynamical systems whose agents are 
identifiable in two possible states only, dubbed - for instance - “1” and “0”, or  “positive” and 
“negative”, “active” and “idle”, or “black” and “white”, etc.;  each variable (agent) may change its 
state in a dynamic process.  

In the theory, such agents are said “binary variables”. If these variables form a set of interrelated 
binary components, the set can be represented as a Boolean network. The network results from the 
fact that each binary variable (or “binary agent”) is controlled by one or more other binary variables 
and, in its turn, controls one or more other binary variables. 

Given any large set of binary variables along with the network of the relevant control 
connections (each variable being initially caught in one of its two possible states), the Boolean 
system may be viewed as in its initial configuration. The constant parameters of the modelled 
system are - in this case – the numbers of the control connections (termed “connectivity” by the 
theory) relevant to the binary variables (or binary agents). The theory provides the rules apt to 
simulate the transition from any given initial configuration of a random Boolean network to a 
subsequent one, each transition step thought of as occurring in a discontinuous time unit.  

Considering that neural networks consist of neural cells that are inter-connected through 
synapses, which may alternatively be “active” or “idle”, it is easy to imagine, for instance, the 
possible applications of Boolean network models to the study of neural processes. Actually, 
Boolean networks have been used also for modelling gene expression and protein regulation 
networks.7 

 

                                                            
7  Biologist Stuart A. Kauffman (The Origin of Order. Self-Organization and Selection in Evolution, 
Oxford University Press, 1993) and followers have used random Boolean networks in the study of possible 
evolutions of gene molecular chains. Apart from licit remarks on artful constraints imposed on the “Boolean 
networks” of the simulations, one major limit consists in considering the modelled system as primarily 
isolated from “the rest of the universe”. (The same limit regards most mathematical models of socio-
biological systems). Early appropriate comments on that book, amongst the several ones published later, are 
by U. Bartocci, Le origini dell’ordine, in  www.cartesio-episteme.net, 1994.  
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As to non-deterministic models of complex dynamic systems (the so-called stochastic 
processes), of a major interest are probabilistic models apt to describe possible evolution processes 
of systems characterized by probability states of the respective components, be the components 
defined as agents or not. Models based on Markov chains, for example, are powerful analytical 
instruments used in a wide range of simulations concerning dynamical systems whose salient 
features are caught in the probability states inherent in their sequence of interconnected 
configurations. Practical problems in adopting models based on Markov stochastic processes may 
arise in choosing the appropriate probability distributions, as it is necessary for starting reliable 
simulations.  

Of a remarkable interest are also the Poisson stochastic processes, which find useful application 
to particular chains of “random” events that depend on time. 

The theory expounded in this paper is based on a probabilistic approach.  
The basic philosophical assumption on which the theory rests is that the recognition and the 

description of any “system” are subjective mental operations. The theory describes a representation 
of alternate unstable equilibrium states and sequences of transition phases in system evolution 
processes, which entails series of transformations of the dynamical structure of complex evolving 
systems. The theory includes conceptual instruments for significant quality evaluation of each 
particular state characterizing the represented evolution of a complex system. 

The theory was conceived to express in a simple mathematical form one particular mental 
representation of the processes that are observed-in or thought-of socio-economic systems. Initially, 
the theory aimed at describing and analysing the representation of both the activities and the 
development processes proper to observed interconnected human settlements or to systems of 
interrelated economic sectors. However, a number of “specialized” models can also be derived from 
the theory for the study of other kinds of conceptualised complex systems. 

The theory is the expression of a mental representation that focuses attention on the intensity of 
the interactions characterizing particular aspects of the observed system, rather than focusing on the 
behaviour of the “agents” that activate the system. One of the theory’s basic philosophical 
assumptions is that the interactions detected are the vehicles of almost all of the specific 
information needed by the observer to better understand the processes studied. It is obviously a 
conceptual simplification, which can nevertheless corroborate the effectiveness of the 
representation. 

The identification of the conceptualised system depends on the specific nature of the interactions 
that the observer can single out from a larger context of observed events. Such interactions must be 
measurable by use of significant measurement units, in view of analyses and calculations that are 
useful for practical purposes. The intensity of each detected interaction may be expressed in relative 
terms with respect to the overall amount of the interactions detected in the system during a 
conventional time unit; which actually results in a set of percent interactions recorded by the 
specific surveys carried out on the studied system.  

The active components (the “agents”) of the system are recognized and characterized according 
to the nature of the respective interactions. 

The system’s set of active components does always include one non-characterized “external 
component”, which represents the rest of the universe with respect to the particular set of the other 
components described. Thus, for instance, if the represented system regards vehicular traffic 
between the traffic origin and destination localities of a given set, then the “external component” of 
the system is both the destination and the origin of the traffic flows bound-for or coming-from any 
unidentified localities that do not belong to the given set of well identified localities. Note that, in 
this example, the traffic flows are the interactions, while the flow origin localities themselves are 
considered by the theory as the activators (the “agents”) of the system.  
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Since – in all cases - the system of the detected interactions depends on the survey’s method and 
time, the recorded percent interactions are viewed by the analyst as the interaction probabilities 
concerning a conventional original configuration of the studied system, which simply and 
necessarily corresponds to the state of the interaction distribution at the survey time. 

 
 

1. The system to recognize and describe 
 
The mental activity of defining systems is in itself a complex system of operations. In dealing 

with “systems”, humans are not always aware of the limits and implications inherent in the way 
they recognize and describe the systems considered. 

 
 

1.1 Real world and its representation 
 
Let us start with a banal example: any active technological contrivance constructed by humans 

for whatever purpose should never be considered as a complex system of interacting components, 
unless one accounts also for its context of necessary connections with the relevant human operators 
as well as, through them, with the rest of the universe. To mean that the operators and the rest of the 
universe are necessary components of the system, in which the active machine under consideration 
is only a minor component. In other terms, the contrivance in itself is not a “complex system”, but 
only a more or less complicated mechanism.  

However complicated and sophisticated may any mechanism be, no contrivance in itself can be 
considered as a complex adaptive system to the extent that it can neither spontaneously adapt itself 
against unexpected adversities nor evolve and transform into something different from which it is 
originally. Therefore, the complex systems that deserve our attention in this paper are those evolving 
systems whose possible artificial behaviour, if any, constitute only quite a minor aspect of the 
systems’ activity.  

The manner in which we recognize and identify any “complex system” consists in the 
description of how, when and where our attention focuses on a very partial set of evolving events 
amongst the innumerable describable events in the universe, in the awareness that the identified 
system may be thought of as anything but an isolated and self-sufficient object.  

 
In this connection, we should obviously suspend any comment on what the whole universe in 

itself is: according to our common sense, we should doubt that the universe is a contrivance. The 
universe, thought of as an unlimited set of events, appears through its observable components as an 
extremely complex system, which seems somehow evolving from unknown origins towards 
unknown ends, despite a number of mechanisms that contemporary science hypothesises about 
some of the events observed and – to an almost negligible extent - controlled by humans.  

In an apparent contrast with any complicated artificially active mechanism, a significant though 
“minimal image” of evolving system may be caught in the mental image of a stone. Let alone 
amazing images of complex systems like that - for example - of a new-born baby that becomes 
adult, we may in fact think of any stone as of a particular evolving system, if it is thought of as a 
thing that transforms under the effects of climate and other natural actions only. Jumping beyond 
any temptation to confine the concept of evolving system to the description of social or biological 
organisms, we should seriously consider that the “stone system”, at variance with any artificially 
working mechanism, can be viewed as a complex adaptive system. The stone’s internal 
relationships between different and – at least in principle – well identifiable atoms and molecules 
(these being viewed as generators of interactions), undergo alterations primarily because of the 
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action of the external component, which in this case consists of all the variable and unpredictable 
climate and environmental factors. (Any “image” like that is announcing the importance we may 
associate with the concept of intrinsic “organization” and/or “disorder” referred to complex 
adaptive systems). The stone system is “adaptive” in that it transforms itself according to necessity, 
that is, according to the variable causes that constrain or modify the activities of the stone’s 
components. The transformation may involve both the physical and the chemical structure of the 
stone, in the response to the variable effectiveness of accidental external factors and to the 
alterations in the stone’s internal energy concentration and distribution. In this kind of “evolution”, 
the stone remains itself; i.e., it remains an identifiable system despite the changes undergone. Not to 
add that the stone might be a “trunk” of a petrified forest. 

Any artificial mechanism, instead, ceases its designed activity and becomes no more identifiable 
as such if it undergoes accidents which are incompatible with its functionality. In no case it can 
adjust itself to “traumatic” events and transform spontaneously into a different active mechanism 
capable of performing any significant function. Any functional mechanism is recognizable as such 
until it remains subjected to a central control that is external to the mechanism itself. 

 
To proceed on with the analysis of the relationship between mental processes and human 

perception of the real world, we should first of all account for the language-conceptual framework 
within which any system is recognized and described.  

Our languages are selective, and allow us to recognize only those events which can be expressed 
in words or by means of other artificial symbolic systems. The exercise of knowledge is the way in 
which our languages decompose our overall sensorial perception into much smaller perception 
units, in order to facilitate our physical orientation-in and control on a very complex reality. 

By use of languages, our mental activity establishes elementary concepts through which we 
represent the universe. “Concepts” are the indispensable primitive models that allow us to focus on 
“aspects” of the real world, which we try to control and within which we strive to survive.  

Our knowledge is substantially a linguistic representation of the real world (which obviously 
includes our languages too) and should never be taken as an expression of the world in itself, albeit 
in most cases our daily experience corroborates the conviction that our linguistic models coincide 
with the things we are dealing with. Such a conviction is the source of unceasing delusion and 
frustration, for our awareness about this point is neither spontaneous nor immediate.  

Our mother tongue teaches us the use of the primitive instrument that is indispensable to start 
controlling our relationship with our native environment. Our mother tongue is an impersonal 
institution that pre-exists us and our ancestors, which “ever since” dominates the inter-personal 
connections that bind the individuals of our community together. So we learn to believe that each 
significant word (noun) of our language coincides with the respective material or immaterial object 
referred to, for it seems impossible that real things are not in themselves the pre-given institutions 
meant by the words and by the other symbols we naturally apprehend for designating and 
representing them.  

In other terms, it seems impossible to us that distinct objects do not exists per se in the same way 
as the respective distinct names exist, and which we use - initially - to perceive and memorize them 
as different objects and - later - to recognize and identify them as if they were clearly distinct 
things. 
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1.2 Language, representation and science 
 
This hurried incursion into the sphere of language seems important to me, to remind ourselves 

that all human mental activities are structured by the languages we have learnt to use. 
History is the effect of how different individuals and communities, in different times and places, 

using different languages and relevant practices, have acted - on the basis of their respective 
conceptualized experience - in understanding and governing the world of their interest. 

We should also remind ourselves that until the first decades of the XX century major 
philosophers of our Western culture were still entangled in linguistic scrapes, which originated from 
the study of the connections between languages, meaning, thought, logic and the “real world”. One 
paradigmatic example of the conceptual mess about the formation of human knowledge is, in my 
view, provided by the Tractatus Logico-philosophicus written by Ludwig Wittgenstein in years 
1918-1921.8 

Amongst a few clear manifestations of a new awareness concerning the relationship between 
language, real world and knowledge, the works published by US anthropologist Benjamin Lee 
Whorf are - in my opinion - particularly important.9 After many years devoted to the study of 
various languages and cultures of indigenous populations of the Americas, Whorf found sufficient 
arguments for expressing the thesis that human beings do not share an identical innate mental 
structure, which – according to an erroneous common belief - is independent of the linguistic 
communication means proper to the communities to which they belong. Instead, Whorf maintains 
that each linguistic system is a mental paradigm which per se determines what one perceives in the 
environment one lives in and what one thinks of it. 

Because of the large number of such different mental paradigms, the ways of perception and 
thought in different human communities, which use different linguistic systems, involve perceptions 
and visions of the real world that are basically different from one another. This fact implies that not 
all of the observers who face the same physical evidence will draw a common (or a strictly similar) 
image from the experience of it, unless they share a common cultural background. 

Through an ample range of different languages, human beings have experienced, at different 
scales and by special uses, various degrees of effectiveness of the world’s representations they were 
and are accustomed to believe in. 

After centuries of attempts to connect the conceptual representation of the real world with 
practically effective knowledge, the emergence of modern science (starting in Europe from the 16th 
century) has once and for all made it clear that the most effective language consists in tying – if and 
where this is possible - the meaning of words/concepts (or other symbols) not to objects or events or 
– worse – to other concepts, but to precise operations on the things one can handle and manage. 
That is the why and how modern positive experimental science could emerge and develop together 
with the specific languages adopted by modern sciences.10 
                                                            
8 The English version of the book was published with this title in 1922. 
9  B. L. Whorf, The Relation of Habitual Thought and Behaviour to Language. Written in 1939, it was 
originally published in "Language, Culture and Personality: Essays in Memory of Edward Sapir" edited by 
Leslie Spier, 1941. 
-  Language, Thought and Reality: Selected Writings of B. L. Whorf, edited by John Carroll, John Wiley & 
Sons, New York, 1956. 
10 In the 20th century, a world-wide epistemological debate on “operationalism” was opened, which focused 
on the structuring importance of languages in modern scientific knowledge (the latter viewed as a system of 
achievements effectively different from those pertaining to free philosophical thought), after physicist Percy 
Bridgman published his book The Logic of Modern Physics (McMillan, New York 1927). The same 
physicist (1946 Nobel Laureate) kept the worldwide debate alive through a number of subsequent books and 
publications, amongst which The Intelligent Individual and Society (McMillan, New York 1938), The 
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“Effective languages” are those which allow scientists and technicians to describe, design, 
predict ad produce events with the desired precision, in order to obtain the expected results 
systematically. In modern science and technology, words, concepts and symbols represent specific 
operations of identification, measurement, quantification and calculation of physical things, effects, 
and events which are observable to the extent to which they are identifiable and measurable by use 
of conventional specific instruments.  

In electro-magnetism, for example, if one speaks of “electric potential”, or of “magnetic field”, 
means two particular quantities which can be identified and measured in determined circumstances 
by use of special instruments designed and constructed for those specific purposes.  

In chemistry, writing 2H+O=H2O means the possibility of obtaining one molecule of water by 
combination of two molecules of hydrogen with one molecule of oxygen; “molecules”, “water”, 
“hydrogen” and “oxygen” being “things” that are identifiable and quantifiable through conventional 
specific operational procedures and instruments. And so on. 

Compare, now, the “control” allowed by the scientific concepts recalled above with the “control” 
allowed by non-operational concepts such as, for example, the concepts of “complex”, “super-ego” 
and “unconscious” in psycho-analysis, or “elasticity of the demand”, “propensity to consume” and 
“market transparency” in economics, or “divine providence,” or “The Truth”, or “guilt” in religions. 

In principle, the specific connection of the operational language with any described event allows 
anyone to replicate and verify – at will and with no ambiguity – the objective meaning of statements 
made and texts written and diffused in modern scientific language. Out of the sphere of operational 
languages there is no modern science, but only abstract speculation and philosophy, which – as to 
practical effectiveness – no mathematical language can turn into scientific stuff; unless mathematics 
itself is the stuff addressed. 

 Obviously, this is not to say that non-operational words or concepts have no effects! The point 
is that these other effects (i.e., the effects that may be caused-by or associated-with words and 
concepts of common use or religions or metaphysics or any abstract theories) cannot be kept under 
objective, precisely predictable, replicable, constant, measurable control.11 
 
 
1.3 Evolving systems 

 
Biological organisms are the best examples of complex evolving systems. Though every 

organism is characterized by distinguishing features, which – in a way – make each living 
individual “unique”, contemporary biological sciences have recognized and understood most of the 
physiological systems which are common to the various living species and govern their functions 
and evolution. Biological sciences, from biophysics and biogenetics to molecular biology, from 
botanic and zoology to agronomy, veterinary, medicine and related ones, can identify, analyse and – 
to a remarkable extent – control basic biological structures and functions that work as typical 
systems, which are actually identical in biological types of each species, family, etc.  

The knowledge achieved by contemporary biological disciplines allows specialists to replicate 
their practice in biological experiences indefinitely, with an increasing high probability of success 

                                                                                                                                                                                                     
Operational Aspect of Meaning (in Syntheses magazine, vol.VIII, Nos. 6-7, 1950-1951), Science and 
Common Sense (in The Scientific Monthly, vol.74, no.1, 1954).  
11 Operational languages include any standardized technological language, such as sets of detailed plans, 
drawings, models and specifications prepared to direct and supervise constructions, experiments or events of 
any kind. As to the technological sphere, computational codes are perfect examples of operational language. 
Out of the sphere of modern positive science and technology, the best example of “operational language” is 
probably given by written classical music. 
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in pursuing their purposes. Such an “operational” possibility of replicating experimental successes 
explains why biological disciplines are included in the set of modern sciences. 

Instead, the systems that are usually addressed in essays like this of mine are those systems 
whose behaviour and evolution have a connotation of uniqueness and normally escape commonly 
shared understanding and control techniques. Systems of the kind are, to mention a few significant 
examples only, social communities, special institutional groups, or groups of interconnected 
economic activities and organisations. 

So far, as historical memory proves, economics, politics, sociology, psychology and a number of 
related disciplines could not show any “scientific” success in understanding and controlling systems 
of that kind, just because such systems cannot be typified. It is the repeatedly frustrated and 
unceasing trouble suffered by high stature scholars of recent centuries, while some of them are 
nevertheless still reluctant to renounce attempts to bring the “complexity” of systems like the 
mentioned ones under a “scientific” control.    

 
Once made it clear that the theory expounded in this paper is not a “scientific” theory, but only 

the description of a way of reasoning, I can afford to explain what is meant for “system” in this 
essay.  

In the theory that follows, “system” means any mental representation of a set of recognized and 
measurable varying interactions between the respective “sources” and “destinations” that 
“compose” the system.  

The recognition of any such system depends on the observer’s specific interest and culture, and 
consists in the selection of particular events, according to the observer’s attention and linguistic 
structure. For the observer, the kind of system addressed here is characterized by the following 
basic aspects: 

 
(a) the intrinsic variability of the interactions recognized and measured: The interactions constitute 

the system’s “variable elements”. The “interactions” may be flows of any measurable thing (to 
be clearly specified case by case), which are generated or absorbed by sources and destinations, 
respectively, during any conventional unit of time; 

 
(b) a “source” is not necessarily also a destination of interactions, and – vice-versa – not every 

“destination” is necessarily also a source of interactions, though – in general – the theory 
considers every “component” of the system as both origin and destination of interactions. The 
identified sources/destinations are finite in number and form the “internal components” of the 
system; 

 
(c) one special non-identified component of the system, which is both “source” and “destination” 

of interactions with part or all of the other components, is always associated with the set of the 
system’s internal components. Such unidentified source and destination of interactions is 
referred to as the “external component” of the system (it may be considered as the rest of the 
universe with respect to the studied system); 

 
(d) any “source” may also be the destination of part (or all) of the interactions it generates: That 

part of interactions is referred to as the “self-interaction” of the source. There is to note, in 
particular, that the specific self-interaction of the external component is a systematic unknown, 
which cannot be detected directly, but only calculated – case by case – on the basis of all the 
other interactions of the system, which are measurable by assumption; 
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(e) the system evolves through changes in the activity of its components; these will also be referred 
to as the “activators” of the system. The system’s activity is expressed by the distribution of its 
elements (the interactions) between its components (the activators). 

  
The variability of the interaction distribution is thought of as prevailingly due to the observer’s 

perception that most interactions do not occur randomly, but are generated and bound for the 
respective destinations in view of ends to achieve. This is also a way to mean that the existence, 
nature and activity of each source is thought of as depending on the existence and activity of the 
other components of the system; while one cannot exclude the presence in the system of randomly 
generated or mislead interactions.  

In this connection it is also perceived that the system’s activators (i.e., the system’s components) 
can modify the respective actions under the rise of unpredicted constraints that might improve or 
worsen the effectiveness of their activities. In this sense, the thought system is both evolving and 
adaptive, since the occurrence of alterations in the generation and distribution of the interactions 
brings about transformations but does not necessarily imply the disappearance of the system, albeit 
such an event is in principle possible at any stage of the system’s evolution.  

Therefore, starting from any detected initial configuration of the interaction distribution, changes 
in the system shall be expected that imply both re-distributions of the interactions and modifications 
in the action potentials of the system’s components.  

As shown in the chapters that follow, a salient feature of such a thought system is that all the 
inherent characteristic quantities (parameters, constants, indicators, etc., as defined by the theory), 
can be expressed in function of the recognized and quantified interactions only. This means also 
that, once the system’s specific interactions are quantified by appropriate methods and instruments, 
all of the significant analytical conclusions are also quantified and expressed independently of any 
other quantity that is extraneous to the system of the interactions described and represented. 

 
The properties of the system I have just introduced hint clearly at the representation of systems 

whose components direct the respective actions according to “intents” (the ends to achieve I have 
mentioned above), which are pursued by each activator through interactions with other activators 
that recognise each other as such.  

Thus, the point to account for is that the activators (i.e., the system’s components) can in general 
express a certain degree of intelligent (thoughtful albeit not necessarily brilliant) 12 activity. As we 
will see, the involved overall degree of intelligence could be measured by the degree of 
effectiveness expressed by the system’s activity, according to the level of the system’s internal 
organization that I dub “syntropy”. 

The complexity of the system is strictly related to the intrinsic impossibility to predict stable – 
even if minimal – changes in the initial interaction distribution. Temporary accidental or periodical 
changes (in the interaction pattern of intentional interactions) can usually be observed or thought of 
as effects of seasonal or recurrent modification in the overall (natural or cultural) context. Evolution 
processes, however, are caused by irreversible changes in the set of intents that constitute the actual 
structure of such systems, as it is also denounced by irreversible changes in the initial (basic) 
interaction distribution. 

 The intents form the dynamical structure that determines the interactions between activators. 
Any evolution of the intents implies a corresponding evolution of the whole system. (As previously 
promised, “intents”, “structure” and the rest will carefully be defined by the theory in function of 
the interaction distributions). 

                                                            
12  I am taking this smart definition from Complex Adaptive Systems, by J. E. Miller & S. E. Page, Princeton 
University Press, 2007, p.3, op. cit. 
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1.4 Systems of intentional interactions 

 
The fundamental objects of this theory are the measurable flows of “intentional interactions” 

between the components of any represented system.  
The substantial image of any described system does not differ from that of an interaction 

distribution seized or thought of as occurring between any kind of system components during any 
conventional time unit. 

Stating that the interaction flows are intentional is positing that a quantifiable “intent” is always 
associated with any interaction unit per time unit. Thus, any interaction shall be viewed as some 
conceptual connection of a flow of measurable things with the expression of the intent (the end to 
achieve) that motivates the interaction. 

 
In a very coarse similitude, I deem it useful to compare the concept of “intentional interaction” 

with the concept of “force” in classical mechanics. “Force”, in physics, is currently understood as a 
measurable quantity resulting from the mathematical product of a material “mass” with the 
acceleration it undergoes case by case. Actually, “mass” is a constant property inherent in any 
physical thing, but it is not a quantity measurable in itself. The “mass” of any material thing is a 
quantity that can only be assessed indirectly as the ratio of the measurable force applied (such as 
the weight of the thing, for example) to the acceleration the thing undergoes, which - in the case of 
the weight (the force applied) – is the gravity acceleration. Thus, while the applied force and the 
relevant acceleration are directly measurable, the quantity of “mass” involved can only be 
determined through a mathematical operation made on the measurements of the two other 
quantities. Nevertheless, “mass” is always and intrinsically associated with “force”. 

“Interactions” are flows of anything real (commodities, people, information, energy, etc.) from 
any activator to another one of the system. “Flows”, as transfer per time unit of real things from 
any source to any destination, are by assumption always measurable; otherwise it’s a system that 
does not regard this theory. The system’s interaction flows may consist of either homogeneous or 
inhomogeneous quantities: in the latter case, however, it is necessary to establish an adequate 
quantification criterion, which allows the system’s description to express the detected flows in 
homogeneous measurement units. 

 
The “intent” - as a quantity indissolubly tied to the respective “interaction”- shall instead be 

introduced through a rigorous definition, as can be provided by an appropriate mathematical 
formula. (Here is the rough analogy with the definition of “mass” in mechanics).  

Actually, the whole theory rests on the suggested solution to this problem. 
The solution formula achieved for the “intent” expresses a specific logical relationship between 

each interaction flow and the specific related set of other flows.  
The formulation of the problem and its solution come from the assumption that any specific 

system of interactions conveys the information that is necessary to obtain from the system observed 
and represented. 

The interaction system being postulated as consisting of measurable elements makes the theory 
possible of operational application and check, albeit the applications of this theory are severely 
conditioned by the methods used in quantifying interactions through direct surveys.  

 
It is worth stressing again that the “interactions” addressed by this theory are always meant as 

flows, i.e., as quantities that start moving from sources to destinations in a given time unit. For 
instance, if it is “flows of commodities” or “flows of people”, the interactions consist of the 
transfers of commodities or people, respectively, which are generated during any conventional 
unit (or period) of time. 
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Therefore, the “physical dimension” of an “interaction flow” is systematically given by the ratio 
of a specific quantity to the time in which the quantity’s transfer occurs. However, almost all of the 
subsequent theoretical discussion does not mention the “time” at denominator of the ratios that 
define the “flows”, since it is considered as obviously implied.  

 In particular, dealing with “interaction probabilities”- as defined by ratios of flow to flow – the 
relevant time unit is elided along with the physical dimension of the probabilities. Nevertheless, it 
remains understood that the system of interaction probabilities relates to the flow distribution that 
is detected or thought of as occurring during the specified period of time. 
 
 
2. Representation of the system 
 
 
2.0 The system’s size and basic symbolism 
 

This chapter introduces additional definitions in order to establish the terminology and the 
symbolism proper to the theory. As expected, most definitions adopt mathematical symbols and 
expressions, whose basic function is to minimize language ambiguities. 

In this connection, it is soon necessary to remark that a number of terms such as “effectiveness”, 
“costs”, “investments”, “structure”, “potential”, “disorder”, “order”, and several other ones, which 
will appear in this paper, shall be understood according to the meaning that pertains to the relevant 
context only. The concepts recalled by those terms shall not be referred to any other use made by 
other theories in other contexts, since every specific concept formulated in this theory undergoes a 
circumstantial re-foundation of its meaning, still with a view to minimizing ambiguity and 
misunderstanding. 

Any represented system will in general consist of N components, including the external 
component defined in the previous chapter. Therefore, N-1 is the number of the internal 
components, which form the “main system”, i.e., the set of well identified components. 

Number N will be referred to as the “size” of the system.  
The elements of the system are the interaction flows, which have been defined as transfers per 

time unit. For identification purposes, these elements are represented by letter “T” labelled by 
couples of index numbers, such as “0, 1, 2,…, n”, which , during the analysis that follows, are 
currently replaced by generic literal symbols like j and k. These labels are the “names” of the 
system’s components. Thus, for example, symbol T3,26 represents the quantity of transfer generated 
in any conventional time unit by component “3” and bound for component ”26”, as – generically – 
Tjk represents the quantity of transfer generated by component j and bound for component k. The 
analysis treats the system’s elements as if they were homogeneous quantities.  

In general, it is assumed that – in the time unit considered – the transfer Tjk from component j 
toward component k is different from the transfer Tkj from component k toward component j, with 
the only exception of the self-interactions, i.e., the transfers whose destinations are the same 
components that generate them. Thus, we can in general write that: 
 
[2.1]                                  Tjk ≠ Tkj  ;      (  j ≠ k ;    j, k = 0, 1, 2, …, n), 
 
which means that inequality [2.1] is true of any pair of components j and k except when the two 
components coincide, that is when both the generated and received transfers coincide in one and the 
same flow. 

Any transfer Tjk (whatever indexes j and k) may equivalently be dubbed “oriented transfer” or 
“oriented flow” or “oriented interaction”.  
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Therefore, the whole interaction system can be represented by a square matrix of oriented 
transfers, as follows: 
                                                                                                                           
    T00     T01     T02   …    T0n 
    T10     T11     T12   …    T1n  
[2.2]    T20 T21     T22   …    T2n     
     …      …     …     …    …     
    Tn0     Tn1     Tn2    …    Tnn 
 
 

This square matrix consists of  (n+1)×(n+1)=(n+1)2  elements.  This is also the number of all the 
interactions detectable in the system.  

The index “0” refers to the external component (i.e., to the “rest of the universe”).  
The elements of each row of the matrix represent the transfers from the respective source-

component to every destination-component of the system, including the source itself. The elements 
having couples of identical indexes in the principal diagonal of this matrix represent the system’s 
self-interactions.  

The elements of each column of the matrix represent the system’s transfers bound for the same 
destination-component, as this is indicated by the second index of the figure: it is the set of transfers 
expected on arrival at each destination-component. 

 For further use, consider the size N of the system as also defined by  
 

[2.3]                                           2( 1) 1N n n= + = +   
 

In this connection, it is worth considering that the “main system” defined above is represented by 
the square matrix of  n×n = n2  elements that are not marked by index “0”. 

The matrix [2.2] may be referred to as “interaction matrix”, or “transfer matrix” or “activity 
matrix”, indifferently. 
 
 
2.1 The system’s configuration 
 

In representing the system according to the configuration that the observer (or the analyst) 
perceives as the system’s “original state”, the matrix [2.2] shall conveniently be supplemented by 
the representation of the data concerning three sets of relevant total values, which – as will be 
shown in subsequent sections of this paper – play major significant roles in developing the theory. 
Therefore, the matrix [2.2] is completed as follows: 
 

[2.4] 

T00 T01 T02 … T0n O0 
T10 T11 T12 … T1n O1 
T20 T21 T22 … T2n O2 
… … … … … … 
Tn0 Tn1 Tn2 … Tnn On 
D0 D1 D2 … Dn T 

 

 
In this new matrix, the column of symbols Oj , (j = 0, 1,…, n), represents the sums of the figures 

of the respective rows; i.e., each symbol represents the total transfer originated from the same 
source-component; whereas the symbols Dk , (k = 0, 1,…, n), in the lowest row of the matrix 
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represent the sums of the respective columns, i.e., each symbol represents the total transfer that in 
the system is bound for the same destination-component. 

Symbol T represents the sum of the whole set of the system’s interactions occurring in the time 
unit (or period) considered. Table [2.4] shows that the sum T of all the transfers Oj generated in the 
system during the period of time considered is also the sum of all the transfers Dk expected on 
arrival at the system’s destinations during the same period of time. 

All this is synthetically summarized in mathematical terms by the following definitions: 

[2.5]                                       
0

n

jk j
k

T O
=

=∑  ;                             (  j)  13 

[2.6]                                       
0

n

jk k
j

T D
=

=∑  ;                             (  k)   

[2.7]                                  
0 0 0 0

n n n n

j k jk
j k k j

O D T T
= = = =

= = =∑ ∑ ∑∑  . 

 
As to the notation, however, I deem it convenient, from now on, to simplify the very frequent use 

of the symbol “Σ” for “sum” as follows: 
 

[2.8]                      
0

n

j j=

= =∑ ∑ ∑  ;   
0

n

k k=

= =∑ ∑ ∑  ;    
0 0 ,

n n

j k j k= =

=∑∑ ∑   , 

 
because there is no risk of ambiguity when all the indexes specified by this symbol and/or by the 
addends are involved in the sum operations. 

Furthermore, it is often convenient to express any matrix by indication of its generic element 
between brace-brackets: for example, {Tjk} to express the matrix [2.1]; or {Oj} to express the 
column-matrix of the total transfer generations included in the matrix [2.4], and {Dk} to express the 
row-matrix of the total transfer destinations in the same matrix.  

It is also possible to express the interaction matrix relative to the “main system” alone by use of 
the symbol {Tjk≠0}, which is the matrix of the interactions occurring between the system’s “internal 
components“ only. 

The use of brace-brackets regards any kind of matrices, as specified according to necessity. 
 
With regard to the terminology, the matrix [2.4] (or – equivalently – the set of matrices {Tjk}, 

{Oj}, {Dk} together) will be referred to as “the system’s configuration”. 
The set of the two matrices {Oj} and {Dk} will be denominated “the base of the system”, while 

– separately – the matrix {Oj} forms “the system’s origin semi-base”, and the matrix {Dk} forms 
“the system’s destination semi-base”. 

As a side consideration, note that infinite different configurations exist for any given identical 
base, whereas once given the matrix {Tjk} the relevant base (i.e., {Oj} and {Dk}) remains univocally 
fixed. (In other words, an infinite number of different activity matrices {Tjk} of the same size may 
all have an identical base). 
 
 

                                                            
13 To remind the reader that symbol “  ” associated with any index means that the regarded relation is true 
irrespective of the “value” of the index. Therefore, in this case – as well as in analogous cases – it means that 
the definition [2.5] holds true for every component of the system. 



Syntropy 2013 (3): 50 -153 ISSN 1825-7968
 

68 

 

 
 
2.2 Measurement of the interactions & interaction probabilities 
 

It is supposed that the necessary surveys are carried out when – according to the observer’s 
perception – the interaction system is in its “normal condition”; which means that the system 
appears to the analyst in a state of temporary or relative equilibrium with respect to the overall 
dynamics of the processes to be represented. Dealing with intentional interactions, the relatively 
stable state thought of during the observation period is supposed to last enough to allow the 
interactions to start producing the effects expected by the system’s activators. 

 
In practical applications, the possibility of compiling an adequate interaction matrix depends on 

the complexity of the system to survey in conjunction with the available financial resources and the 
accuracy of the survey methods and techniques adopted. 

With rare exceptions, the methods and techniques shall usually respond to statistical criteria and 
focus on appropriate samples of the interaction flows to detect and assess.  

Moreover, in most cases, the survey findings must eventually be expressed by homogeneous 
figures, which in turn depend on the different homogenization methods that are used in accordance 
with the different specific applications of the theory. 

 
The adoption of statistical criteria is not only a practical necessity against the instant variability 

of the interactions detected during the survey times, but also a theoretical principle to avoid 
accounting for surveyed accidental details that may jeopardize the reliability of the system’s 
representation. Not to forget that the system is by assumption evolving, and that the system’s image 
represented by the survey data is only the image of a momentary conventional stability state. The 
system’s “original configurations” - as temporarily stable states addressed by the theory - are only 
convenient assumptions, which are necessary for developing a logical representation of the 
evolution processes described.  

Normally, the description of evolution processes, both in this theory and in other ones, consists 
in the representation of at least two kinds of “configurations”: one relative to equilibrium states (be 
these temporary or permanent conditions of the system); the other one relative to transition states, 
which are represented in sequences of unstable configurations. 

 
The preceding considerations suggest that – in all cases – any adequate assessment of an 

interaction system consists of the most probable measurements of the transfer flows surveyed. This 
is the reasonable conclusion that leads to turn any interaction matrix into a system of interaction 
probabilities, which bears a number of important theoretical and practical simplifications.  

The first simplification is the elimination of most worries concerning the adequacy of the criteria 
followed to measure and homogenize the flows detected.  Any interaction probability is the ratio of 
a flow to a flow, so that any consistent measurement criteria used to detect and record the transfer 
flows does not change the value of the ratio.  

A second major simplification, particularly appreciated in technical data processing, is just the 
possibility of dealing with numbers void of physical dimension. 

The third principal virtue of any set of probabilities is the possibility of processing them by 
means of logical instruments proper to the theory of probability. 

Therefore, once detected and recorded the interactions of the system to represent, it is also 
possible to compile the respective matrix of interaction probabilities that verify the following 
equations: 
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[2.9]                                      jk j
k

P P=∑  ;                                   (  j)   

[2.10]                                    jk k
j

P Q=∑  ;                                   (  k)   

[2.11]                                    
,

1j k kj
j k

P Q P= = =∑ ∑ ∑  . 

 
This set of equations is simply resulting from the division of the definitions [2.5], [2.6], [2,7] by 

the total transfer T detected in the system. Therefore: 
 

 [2.12]                                 jk
jk

T
P

T
=                                            (  j, k)                      

 
expresses the probability (in the given period of time) that a transfer flow is generated by 
component j and bound for component k; while 

 

[2.13]                                   j
j

O
P

T
=                                              (  j) 

 
expresses the probability (in the given period of time) that any transfer in the system is generated by 
source j ; and  

 

[2.14]                                  k
k

DQ
T

=                                             (  k) 

 
expresses the probability (in the given period of time) that any transfer in the system is bound for 
component k.  
 

It is worth noting that the relations [2.11] – and obviously those from [2.12] to [2.14] - express 
three different discrete probability distributions. 

A probability distribution exists when the sum of all the probabilities of a given set is equal to 1. 
(In this connection it is important to remind the reader that any probability value may only range 
between 0 and 1). 
 
 
2.2.1 What interaction probability means 
 

Since centuries theorists debate about the meaning of “probability”, without a final conclusion 
though. Dictionaries rest on the common sense and define probability according to its simplest 
mathematical meaning, i.e., “probability” as a “ratio” showing the chances that a particular event 
will occur. 

As to the interactions flows detected during any on-the-field survey, the events are just occurring 
and measured, albeit by methods that cannot ascertain the maximum precision of the figures 
recorded. In this connection, it must be remarked that no absolute certainty characterizes any 
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laboratory measurement operation; this is the fact that has led experimenters to lay the foundation 
of the “theory of measurement”, which concerns all modern scientific and technological activities.  

In the context of the theory expounded in this paper, I deem that the concept of “probability” 
may conveniently express the degree of reliability of the measurements effected, accounting for the 
analyst’s subjective knowledge and information about the system he tries to describe. It is a 
standpoint close to that of the theorists of the operational subjective conception of “probability”, 
who remark that – in practice – any probability assessment depends on what one knows about any 
possible event.14 The operational subjectivity of the probability assessment as “opinion based on the 
information one possesses” is discussed also in relation to the so called “objective possibility of 
occurrence” of the events considered, as in the cases of dicing or lotteries.15   

As shown ahead, operational subjectivity, information and uncertainty play a joint fundamental 
role in the construction of the theory expounded in this essay. 

 
 

2.3 Expectations associated with the interactions: Efficacy and   randomness of the transfers 
 

Assuming that the interaction flows are “intentional” implies the assumption that the activators 
of the flows attach the expectation of some effect to the interactions they generate. For instance, if 
the interaction flows consist of transfers of commodities between producers and buyers, one may 
assume that the producers expect a payment from the buyers. In general, however, it is not 
necessary to think of the flows’ efficacy as of the benefits of a successful sale, or as of the benefits 
of any commercial, financial or any other business transaction, unless such transactions are 
considered as included in a very large unspecified variety of possibilities. Think, for example, of the 
flows of people moving from place to place in any urban or regional area, or of the exchanges of 
information flows through a postal or telephone network. Such kinds of flows aim at ends that are 
difficult – or impossible – to define and quantify either in conventional economic terms or in terms 
of achieved efficacy. 

There is no inconvenience in defining the “efficacy” associated with any interaction flow as the 
mathematical difference between the “results” intended by the interaction and the adverse factors 
that oppose the achievement of the results. The “adverse factors” I mean here are dubbed “the 
costs” of the interaction: by a terminological convention, “costs” are all kinds of burdens, 
constraints, hindrances, frictions, errors, etc., which can attenuate or cancel or even overcome the 
“value” of the achieved “results”. 

Both “results” and “costs” shall be thought of as entities somehow quantifiable by homogeneous 
measurement units, albeit the use of those concepts in this theory does not presuppose any direct 
measurement of the relevant quantities. 

In principle, the observer/analyst assumes that the values for “results” and “costs” are 
subjectively assessed by the system’s activators, according to evaluation criteria that are likely 
different from case to case and objectively unidentifiable. The analysis that follows will represent 
and process “efficacy“, “results” and “costs” associated with the interaction flows symbolically, 
according to the meaning expressed by the following mathematical relation 

 
[2.15]                                             Ujk = Bjk - Cjk  ;                               (  j,k), 
 
                                                            
14  Italian mathematician Bruno de Finetti (1906-1985) was one of the leaders of this school of thought: 
Teoria delle probabilità, (2 volumes), Einaudi, Torino 1970. (English version, Theory of Probability, 2 vol., 
Wiley, New York, 1974). 
15 As a quick reference, see also the discussion on the topic I have summarized in the article Syntropy, 
Definition and Use published by this magazine in December 2008, Paragraphs 4 & 5. 
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in which Ujk represents the “efficacy” associated with any interaction flow Tjk , while Bjk and Cjk 
represent the relevant ”results” and “costs”, respectively. 16 
After division of the equation [2.15] by Tjk , a mean efficacy is symbolically expressed by              
ujk = Ujk /Tjk , (  j,k),  which shall be associated with every interaction unit of flow Tjk ;  whence the 
definition 
[2.16]                                        ( )jk jk jk jk jku b c T U= − = ;                    (  j,k), 
 
in which bjk and cjk symbolize the mean result and the mean cost, respectively, associated with any 
unit of the flow Tjk. 
 
The theory formulates the concept of “intent associated with every interaction flow” as a simple 
mathematical quantity directly proportional to the unit-flow’s mean efficacy ujk defined above. The 
definition of the flow’s intent, as obtained through the analysis that will follow, is given by: 
 
[2.17]                                               µjk = λujk ,                                   (  j,k), 
 
where  µjk  is the “intent” of the respective interaction flow and  λ  is a system constant that depends 
on the measurement system used for quantifying the interaction flows. 

Subsequently, as announced in Paragraph 1.3 of Chapter 1, the “intents” of the interaction flow 
system will be quantified precisely and only in function of the transfer flows detected, in compliance 
with one of the chief tasks of the theory. 

In this context “intent” as well as “efficacy” do not necessarily relate to positive quantities. In 
particular, an interaction is referred to as “random interaction” if its “intent” is nil (i.e., µjk = ujk = 0), 
since the “end” of the flow is in this case equated by the analyst with any flow whose results and 
costs are also nil, in connection with the fundamental assumption that the observer cannot access 
the measurement of “efficacy” and “intents” directly.  

In general, as it will be explained, the analyst considers that the interaction system is in a state of 
“randomness” when the system’s configuration is characterized by an interaction distribution that 
does not express any associated distribution of “differentiated intents”, or – more precisely – when 
all the intents expressed by the system may be supposed to be equivalent to each other (i.e., µjk = µ*, 

j,k). 
Instead, as per further discussion, negative values appearing among differentiated intents may be 

interpreted in various ways, according to the possible uses of the theory when applied to a number 
of particular cases. 

In this theory the “intents” µjk defined above constitute the “structure” of the system, both in the 
form of the definitions [2.17] or – indifferently – in their exponential form given by 
 
[2.17a]                                             jku

jk eλε =  ,                                ( j,k), 
 
which will later be introduced as the system’s “relation coefficients”. 

A “matrix of intent {µjk}” – as well as the corresponding “relation matrix {εjk}” – is univocally 
associated with any given interaction matrix {Tjk} and with the corresponding probability matrix 
{Pjk}. 

The matrix {µjk} (or, indifferently, the matrix {εjk}) represents the structure of the system.  

                                                            
16  If the theory is used to describe socio-economic or financial systems, symbols  Ujk , Bjk , and Cjk  can 
suitably represent “gains/losses”, “benefits” and “costs”, respectively, as usual. 
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Note that the matrix of intent {µjk} may include negative elements in consequence of negative 
values of the relevant interaction efficacy, by which the intents are determined (see the definition 
[2.17]); whereas this is not true of the relation matrix {εjk}, in which all elements are exponentials, 
whose values are always positive (or nil only if the “intents” are infinitely negative). The matrices 
{µjk} and {εjk} are different forms for representing the system’s structure during the analysis, 
according to occasional convenience. 
 
 
2.4 Imaging the system 
 

In the preceding paragraphs, the principal terms used by the theory have been introduced to 
describe the system, as per the following summary list: 
 
(1) the interaction flows Tjk (and respective probabilities Pjk) between the system’s components (or 

activators), as basic elements that determine the system’s “flow matrix” or “transfer matrix” or 
“activity matrix”  expressed by the matrix {Tjk}, (i.e., the matrix [2.2]) or – indifferently – by 
the corresponding probability matrix {Pjk}; 

 
(2) the base of the system, as expressed by the set of origin semi-base matrix {Oj} and destination 

semi-base matrix {Dk} (or – indifferently – by the set of the two respective probability matrices 
{Pj} and {Qk}); 

 
(3) the system’s configuration, as expressed by the activity matrix {Tjk}   together with the system’s 

base {Oj} and {Dk} ; (or – indifferently – as expressed by the set of the three respective 
probability matrices {Pjk}, {Pj} and {Qk}); 

 
(4) the generic mean efficacy ujk associated with any interaction unit, expressed by the difference 

between the mean result bjk achieved by the same interaction and the relevant mean cost  cjk  
involved; 

 
(5) the generic intent µjk of any interaction flow Tjk , as motivation of the flow, which is a linear 

function of the flow’s mean efficacy;  
 
(6) the intent matrix {µjk} as structure of the system; occasionally, the same structure may also be 

represented by the relation matrix {εjk}, whose elements are the exponentials of the elements of 
the matrix {µjk}.  

 
By assumption, the elements of the transfer matrix {Tjk} are the only quantities that must be 

considered as directly measurable (through on-the-field measurement operations), whereas all the 
remaining quantities defined above shall be expressed or determined indirectly, in function of the 
values assessed for the elements of the matrix {Tjk}.  
 
 
2.5 Disorder and order in the system’s image. Entropy and Syntropy 
 

The observer gets an image of the system that he can recognizes as such through the perception 
of a certain degree of order established between the system’s components and interactions, 
according to all that which he knows or guesses about the events observed. His perception is 
connected with the observation that a major part of the interactions that constitute the system’s 
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activity are not randomly generated and distributed amongst the system’s components, but show 
instead criteria of destination selection that reflect in the differentiated intensities of both production 
and confluence of the detectable interaction flows.  

In other words, to the observer mind the system’s components show a sort of hierarchy as to 
their capacity to produce, convey and absorb interactions. Should this not be true, the observer 
would have no reason for thinking that the events under his attention may constitute a “system”. 

One operational means for assessing the degree of disorder in the studied system is provided by 
the concept of statistical uncertainty. As known, the concept was precisely formulated in 
probabilistic terms by USA mathematicians Shannon and Weaver in dealing with the theory of 
information transmission and processing.17 Shannon proved the existence and uniqueness of a 
mathematical quantity, to be appropriately labelled “statistical uncertainty”, which is always 
associated with any distribution of probabilities. Given the probability distribution pi , (i = 1, 2,…, 
n), of any set of n different probabilities with which the observed events may occur, (remember that 

– by definition – it is 
1

1
n

i
i

p
=

=∑ ), there is a quantity E, dubbed “statistical uncertainty”, which is 

univocally associated with the distribution of  pi  and  expressed by 
 

[2.18]                                    
1

log
n

i i
i

E p pα
=

= − ∑    , 

 
in which α is a numerical constant that depends on the base of the logarithms “log”. 

Shannon named uncertainty E “entropy”, since both shape and conceptual meaning of the 
equation [2.18] corresponds to the mathematical definition of “thermodynamic entropy” introduced 
by the statistical mechanics formulated by Ludwig Boltzmann in years 1877-1880.18  

Quantity E is always a positive quantity: Consider that probabilities are positive quantities, 
generally less than 1, and that the logarithms of positive numbers less than 1 are negative numbers. 
Consider also the following particular cases: 

 
if the probability distribution consists of one probability only expressed by p=1, then log1= 0 and 

uncertainty E.=.0 . This case regards one only possible event, whose occurrence is certain; 
 
if pi.=.0 , whatever pi , then 

0
lim( log ) 0

i
i ip

p p
→

= ; therefore, if all   pi=.0  then uncertainty E.=.0 too: 

It means there is no uncertainty because no event is possible; 
 
if, in the observer’s opinion, all of the observed events have the same probability of occurrence, 

as it is expressed by pi =p.=1/n , i,  (n  being the number of the possible events), then 
 

[2.19]                           
1

1 1 loglog( ) ( ) log
n nE n n

n n n
α α α= − = − − =∑ , 

 
                                                            
17 Claude Shannon (1916-2001) & Warren Weaver (1894-1978), The Mathematical Theory of 
Communication, University of Illinois Press, Urbana, 1949. 
18 Ludwig Boltzmann (1844-1906), Austrian physicists, defined equation the [2.18] for thermodynamic 
entropy in formulating his kinetic theory of gases. The equation establishes the degree of molecular disorder 
in any volume of gas in a given thermal state, pi being the microstate probability of each molecule in relation 
to its temperature and pressure. 
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which value represents the full uncertainty that the analyst associates with the uniform distribution 
of probabilities. 

 
Both the formula [2.18] and relevant concept may conveniently be translated for the analysis of 

the probability distribution {Pjk} introduced by [2.9] to [2.13], after adopting natural logarithms 
“ln” and assuming conventionally α.=1 for the sake of simplicity, to obtain 

 

[2.20]                              
1 1

0 0 ,
ln ln

n n

jk jk jk jk
k j j k

E P P P P
+ +

= =

= − = −∑∑ ∑  , 

 
which (also allowing for the simplified notation established with [2.8]) expresses the statistical 

uncertainty or the degree of disorder or the entropy that the observer can associate with the N2 

elements of the system under analysis. 
In the extreme case of a transfer probability matrix whose elements are all identical to each 

other, which case can be symbolized by N╳N matrix {Pjk=.Pi=1/N2}, full entropy or full disorder 
H is ascribed to the (would-be) system and expressed by 

 

[2.21]                         
2

2
2 2

1

1 1ln ln
N

i i

i
H P P N

N N=

  = − = −     
∑ = 2lnN  . 

 
Quantity H=2lnN will be referred to as “the system’s entropy potential”, which is directly 

proportional to the logarithm of the system’s size, as defined by the number N of the system’s 
components. 

Entropy potential H expresses an entropy extreme that can never be achieved by the system until 
the observer deems the system existent; (or else, exceptionally, only if the observer/analyst 
considers any finite set of identified “components” as a virtually existing system). 

Conventionally, the full entropy or full disorder state of a system is referred to as the system’s 
“amorphous configuration”, which is only mentioned as a border as well as unattainable state, 
since it must actually be considered as the vanishing state of any system.  

I shall later try to explain the concept through a simple but not banal example, with a view also 
to evidencing the principle, introduced in the preceding chapter, that recognition and definition of 
any system are subjective mental operations: These are proper to the analyst/observer, according to 
his own culture and to the information that is available to him about the events on which his interest 
is focused.  

Meanwhile, it is worth observing that the entropy (or degree of disorder) of the system can also 
be defined in terms of the physical quantities {Tjk} that represent the system’s interactions, 
accounting for the definitions given by the relations [2.7] and [2.12]. Therefore, entropy E may also 
be defined by 

 

[2.22]                              
, ,

1ln (ln ln )jk jk
jk jk

j k j k

T T
E T T T

T T T
 = − = − − = ∑ ∑  

                                          
,

1 ln lnjk jk
j k

T T T T
T
 

= − − = 
 
∑  

[2.22]                               
,

1ln lnjk jk
j k

E T T T
T

= = − ∑   . 
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The value for the system’s entropy (or disorder) expressed in this form is therefore coincident 

with that expressed by the equation [2.20]. 
Therefore, as it should appear obvious, the expression of the system’s entropy potential H takes 

the same form as that shown by the equation [2.21] also when the entropy is formulated directly as 
a function of the transfer flows instead of the respective probabilities. In fact, the distribution of the 
transfer interactions in the system’s amorphous configuration are thought of as all identical to each 
other and represented by the interaction matrix {Tjk=T/N2}.19 Thus, after substitution of all the Tjk in 
the entropy equation [2.22] with T/N2, the immediate result is again 

 

                     
2

2 2ln lnN T TH T
T N N

  = −     
= ( )

2

2ln ln 2ln 2lnN TT T N N
TN

− − = . 

 
When the system consists of a very large number of components, it might be convenient to carry 

out more precise calculations by use of the equation [2.22], instead of [2.20], considering that the 
number of elements in the interaction matrix grows with the square number of the components, and 
that all the elements of the probability matrix are in such cases numbers much smaller than 1. 
Actually, there is to consider that the first significant digits of the probability values may often 
appear at orders of magnitudes such as 10-6 and beyond. 

 
“Syntropy” is then the term introduced by this essay to indicate a possible measurement of the 

degree of order that can be detected in a system, according to the system’s interactions described 
and quantified by the analyst. 

To the extent to which the observer has identified a set of components that interacts intentionally, 
it is quite reasonable to induce that the identified system is not in a state of full disorder. This 
implies that the level of the system’s entropy E must be lower than that of the amorphous 
configuration expressed by H. 

On the basis of this simple consideration, it may conventionally be assumed that the difference 
between the theoretical full entropy H and the actual entropy E associated with the system’s 
interactions provides a significant measurement of the degree of order, dubbed “syntropy”, inherent 
in the system.  

Therefore, the definition of “syntropy”, symbolized by S, is as follows: 
 

[2.23]                                          S = H – E . 
 

This definition makes entropy and syntropy quantities complementary to the entropy potential H, 
which is a constant quantity proper to the system described; so that 
 
[2.23a]                                       S + E = H, constant, 
 
whereas S and E vary according to different possible states of the system during its evolution 
process. 

By use of the equations [2.21] and [2.20], the definition of syntropy can also be expressed by 
 
[2.24]                                      

,
2 ln lnjk jk

j k
S N P P= +∑ , 

                                                            
19 Remember that Pjk = Tjk /.T, ( Pjk) ; therefore, if Pjk. = 1/.N.

2,  then Tjk = T/.N.
2. 
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as a function of the system’s matrix of probabilities; or else by 
 

[2.25]                                     
2

,

1ln lnjk jk
j k

NS T T
T T

= + ∑  , 

 
if expressed - by use of the equation [2.22] - as a function of the transfer matrix. 

 
It is easily proved that both full entropy (E.=.H) and full syntropy (S.=.H) are impossible states 

for any non-amorphous system. 
In this connection, consider function E as expressed by [2.22]. If an absolute maximum value 

were possible for this function, all the first derivatives of E with respect to each variable Pjk  should 
be null, to write  
 

[2.26]                       
,

lnjk jk
j kjk jk

E P P
P P

 ∂ ∂
= − ∂ ∂  

∑ = 

 

                                       ln lnjk
jk jk jk

jk jk

P
P P P

P P
 ∂ ∂

= − + =  ∂ ∂ 
0 ;                ( j,k), 

whence 
[2.27]                                    lnPjk + 1 = 0 ,                                              ( j,k), 
 
which is impossible, whatever Pjk .  

(The case of full disorder, which defines the entropy potential H of the system, is characterized 
by a uniform probability distribution in which Pjk=1/.N.

2 is the value for every interaction 
probability. If this probability value replaces Pjk in the relation [2.27], the result is that the size of 
the system is in all cases expressed by  N = e1/2 =1.64872121…, which makes no sense). 

 
The fact is that the entropy function defined by [2.22] is subject at least to the constraint by 

which the probability distribution {Pjk} consists of variables whose sum must always be equal to 1. 
Therefore, it is possible to determine the maximum value for entropy [2.22] only under the 
constraint established by the equation [2.11], i.e., by the condition 
 
[2.28]                                         φ  

,
1 0jk

j k
P= − =∑  . 

 
The function φ of variables {Pjk} is the constraint under which a maximum for entropy E can be 

found. 
One method for the determination of the constrained maximums of a function is known as the 

Lagrangian multipliers method. According to this method, the coordinates of a point of maximum of 
a constrained function coincide with the coordinates of the “maximum” of another function, named 
“the Lagrangian of the function”, which is expressed by 
 

[2.29]                        L  =  � φ  +  E =  � 
, ,

1 lnjk jk jk
j k j k

P P P
 

− − 
 
∑ ∑ , 
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where �  is a constant value that is usually referred to as Lagrangian multiplier. This is in turn 
determined by the values { jkP } found as coordinates of the constrained maximum for E.  

Necessary condition for L to have a point of maximum is the zeroing of its derivatives with 
respect to each variable Pjk ; that is 
 

[2.30]                                              0
jk

L
P
∂

=
∂

 ;                                   ( j,k), 

which means 

[2.31]                                  
jk

L
P
∂

=
∂

  � –1–lnPjk = 0 ;                        ( j,k), 

 
whence the searched solution 
[2.32]                                             1

jkP eϑ−= ;                                   ( j,k)  . 
 

Using these solutions to replace the {Pjk} in the constraint [2.28], the expression becomes 
 
[2.33]                                       φ  = 2 1 1 0N eϑ− − = , 
whence 

[2.34]                                           1eϑ− = 2

1
N   , 

 
N2 being the number of the probabilities {Pjk}; to obtain also 
 

[2.32a]                                        { } 2

1
jkP

N
 =  
 

  ;      

  
which – as seen before – expresses the probability distribution of an amorphous system. Because of 
the equation [2.21], the entropy of an amorphous system coincides with the system’s entropy 
potential  H = 2lnN, so that the amorphous system’s syntropy is necessarily nil by definition (see 
[2.24]); to mean that an “amorphous” system is such for no degree of internal order (or 
organization) can be represented for it. 
 

The preceding notes prove also that no absolute maximum exists for both the entropy E and the 
syntropy S relevant to any non-amorphous system. Moreover, non-amorphous systems are subject 
to additional constraints that intrinsically imply diversification of the interaction probabilities. This 
fact – i.e., the lack of uniformity in the interaction distribution – means that  
 
[2.35]                                S = H – E > 0     and      E.= H – S > 0   
                      
are differences greater than zero always. 

The actual meaning of these inequalities is – on the one hand – that no system is conceivable if it 
is not possible to associate any minimal order (or internal organization) with the system described. 
On the other hand, the same inequalities indicate that randomness or disorder can in no case be 
eradicated from the system completely, whatever the system described. This is in accordance with 
the meaning attached to the concept of amorphous configuration defined above, which expresses a 
limit not intrinsic to functions S and E, but only a specific border condition that makes the system 
non-existent. 
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The preceding considerations give entropy potential H a basic role in the system’s evolution. The 
entropy potential does not change if the evolving system does not change its size, i.e., if the system 
– during its evolution – does not change the number of its components, for entropy potential H 
depends solely on N. This fact is evidenced by the equation [2.23a], by which the constrained 
evolution of the system may simply be represented geometrically by an ellipse, as follows: 
        

  FIGURE 2.1 
 
 
 
 
 
The axis of entropy potential H=2lnN 

 
                                                                  

This ellipse represents one of the infinite possible elliptical “orbits” with a common major axis, 
which binds “the family” of the system’s evolution paths together. Point P represents the state of 
the system in any given phase of its evolution: The sum of the distances PF.=.S and PF’=.E from 
the ellipse’s focuses F and F’, respectively, is constant and equals H.=.2lnN, which is the length of 
the ellipse’s major axis; while each semi major-axis represents H/.2. The segments  mS  and  mE  
represent two of the infinite possible “minimum values” for S and for E, respectively, while the 
segments H–mS and H–mE represent the corresponding possible “maximum values” for S and E, 
respectively. Both “minimums” and “maximums” are jointly determined by the system’s “base 
configuration”. This concept is introduced and discussed in subsequent Paragraph 2.7.   
 
 
2.6 Shaping a system: A schematic example 
 

The example that follows intends only to show – by means of a thought-situation20 – how a 
system may be “recognized” by an “observer” through the information the observer gets about what 
he observes. 

Suppose I come to know that, in a room of a historical palace in Rome, five representatives of 
five European governments meet for a couple of days to discuss confidentially major unknown 
political issues. 

I plan to describe the possible interaction system that I expect is forming through the exchange 
of information occurring between the members of that group of governmental representatives.  

At the very beginning I can only suppose (as it belongs to the practice of any important meeting) 
that each representative brings a folder with notes and documents to be consulted during the 
meeting. I can also suppose that each participant in the meeting may occasionally avail himself of a 
mobile-phone for quick consultation – as necessary – with colleagues, advisers or members of the 
                                                            
20  This “thought-situation” shall be taken as a conceptual equivalent of a “thought experiment” in physics. 
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respective government, to provide them with news about the meeting in progress and/or to receive 
possible suggestions or directives from people who stay outside the meeting room. Yet, I assume 
that writing personal notes or consulting documents is the self-interaction activity of each meeting 
attendant; whereas I consider the exchange of information through mobile-phones as transfers of 
information to and from the “external component” of the meeting system “under formation”. 

That beeing all that which I know initially, my unique reasonable possibility is outlining a 
potential system of information transfers, which can only be shaped like an amorphous system of 
six components, one of which is external to the “main system” of the five meeting people. Actually, 
given such conditions, the information transfer matrix relevant to the six-component group can only 
be based on an undetermined mean amount x of information uniformely exchanged between the 
components of the would-be system, according to the “amorphous ” configuration here below: 

 

[2.36] 

 0 1 2 3 4 5   
0 x x x x x x 6x O0 
1 x x x x x x 6x O1 
2 x x x x x x 6x O2 
3 x x x x x x 6x O3 
4 x x x x x x 6x O4 
5 x x x x x x 6x O5 
 D0 D1 D2 D3 D4 D5 36x T 

 

 
As evident, this matrix has all the features that characterize an amorphous configuration sized 

N=6. Numbers “0, 1, 2, 3, 4, 5”, are the “names” of the “components” of the would-be system, 
according to the observer’s code; number “0” is also in this case used to label the unidentified 
“external component”. 

The obvious relations that can be formulated are as follows: 
 
[2.37]                                             Oi = Di  ,                              ( i);  
 
[2.37a]                                 36i iO D T x= = =∑ ∑ ;  

 

[2.37b]         
6 1 1 ;

36 6
i

i
O xP
T x N

= = = =  and  
6 1 1

36 6
i

i
D xQ
T x N

= = = = ;     ( i), 

 

[2.37c]                                 2

1 1 ;
36 36jk

x xP
T x N

= = = =                           ( j,k)  . 

 
The entropy associated with this configuration is therefore that pertaining to an image of full 

disorder, proper to the entropy potential H6 of any (would-be) system sized N=6, that is: 
 
 
[2.37c]                   H6 = 2lnN = 2 ╳ ln6 = 2 ╳ 1.79176 = 3.58352. 
 

 
I find a way to contact the five simultaneous interpreters in their translation boxes (which are 

acoustically isolated from the meeting area). The interpreters follow the political discussion only 
through a microphone-earphones system. They can hear online only what people say at the meeting 
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when they speak at the microphones predisposed around the meeting table. Thus, they hear nothing 
of interpersonal conversations occurring accidentally out-of-line or through personal mobile-
phones, nor can they seize what the attendants at the meeting write-on or read from their personal 
notes and documents. Besides, the interpreters are forbidden to report about the contents of the 
political discussion in progress. 

However, the interpreters can see the position, attitude and gestures of the convened 
governmental representatives. Basing on this fact, I ask the interpreters the favour - say for 
“scientific purposes” – to task their box-assistants with metering and recording the time spent by 
each participant  
 
(a) to speak to all the other participants through the microphones predisposed around the meeting 

table; 
(b) to speak privately, on whatever occasion (pauses, coffee-break, etc.), with one or more other 

identified participants; 
(c) both to speak and to stay silent at the mobile-phone; 
(d) to write own-use-notes or reading their own documents.  
 

Thus, using the time measured in seconds as a quantity directly proportional to the quantity of 
information conveyed and received (and considering such a proportionality as acceptable in a first 
approximation), I avail myself of significant data concerning the varied intensity of information 
exchanged between each pair of participants in the meeting, as per activities (a) and (b) above, 
together with the data concerning the interaction with the external component, as per activity (c), 
and the data devoted to the self-interaction, as per activities (d). 

Therefore, the data so obtained allow me to shape an interaction system represented by a matrix 
of figures that can be processed with the purpose of assessing – for example – an approximate 
weight of the intents associated with the interaction conveyed and collected by each member of the 
meeting group. 

The interaction system I describe responds to some interests of mine, which characterize both 
shape and contents of the system’s configuration. Another observer, in the same situation as that I 
have outlined above, might either shape a different system or no system at all. 
In other words, the system I describe is a representation of a particular real event viewed through 
the filter of my own mental inclination and attention. 
                            
 
2.7 Base entropy, base syntropy, base configuration 
 

In Paragraph 2.2, after introducing the definitions [2.13] and [2.14] for the interactions’ origin 
probabilies {Pj} and destination probabilities {Qk}, respectively, I have observed that each of the 
two sets of probabilities constitutes a probability distribution, for the sum of its elements equals 1. 
This implies that a degree of statistical uncertainty (or “entropy” as per Shannon’s definition) may 
be associated with each of them: Namely, 

 

[2.38a]                                         
1

ln
N

O j j
j

E P P
=

= −∑  . 

 
dubbed “origin semi-base entropy”, and 
 

[2.38b]                                        
1

ln
N

D k k
k

E Q Q
=

= −∑   . 
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to be dubbed “destination semi-base entropy”. Therefore, in general, “base entropy E* ” is 
defined by 
 
[2.39]                               ( )*

,
ln lnj j k k

j k
E P P Q Q= − +∑ . 

 
When the system’s configuration is amorphous, as is the case of the example represented by the 

configuration [2.36], the two semi-base entropies are equal to each other, each equalling half 
entropy potential H, as obviously evidenced - after remembering [2.37b] above - by  
 

[2.40]                       
1

1 1ln ln ln
N

O D i iE E P P N N
N N

 = = − = − = 
 

∑ ,  

whence also 
 
[2.41]                                  E* = EO + ED = 2lnN = H. 
 

This equation states that the “base entropy E*” of any amorphous configuration is expressed by 
the sum [2.41], which is equal to the entropy potential H that is associated with the whole random 
interaction matrix of the amorphous “system”.   

Normally, however, the base entropy E* of a generic system is less than H, and the difference 
between H and E* defines the “base syntropy S* ” of the system, to write 
 
[2.42]                                              S* = H─ E*,  
 
which leads to  
 
[2.43]                  S + E = S*+ E*= H ,   whence   S ─  S* = E*─ E ≥ 0. 
 

It is evident from these relations that the system’s entropy E is in general less than the system’s 
base entropy E*, whereas the system’s syntropy S is in general greater than the system’s base 
syntropy S*. 

In subsequent sections of this paper, the importance of the system’s base syntropy S* will be 
shown in relation to the system’s stability. 

 
It is now important to observe that amorphous configurations may be hidden behind interaction 

matrices which – at a first glance – could appear relevant to non-amorphous systems.  
Starting by an example is still the easiest way to clarify the case.  
Let’s suppose that the observer of the international meeting – as addressed by the preceding 

example – accounts for the fact that three of the five participants in the meeting represent the 
governments of three South-European Countries, whereas the other two represent North-European 
Countries. With no other information about the meeting, on the only basis of supposed affinities 
between the meeting people, the observer may try to reduce his uncertainty through a reduction of 
the would-be system from six to three components only, grouping in his representation the South-
European participants to form component “A”of the system, the North-European participants to 
form component “B”, and the external universe to form component “C”, thus re-arranging the 
matrix [2.36] as shown below: 
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x x x x x x    
x x x x x x → 18x OA 
x x x x x x    
 
x 

 
x 

 
x 

 
x 

 
x 

 
x 

 
→ 

 
12x OB 

x x x x x x    
x x x x x x → 6x OC 

 ↓  ↓  ↓  ↓  
 18x  12x  6x → T     =  

36x 
Tot. 

 DA  DB  DC  Tot.  
 
which can be summarized by the following configuration: 
 

[2.44] 

 A B C   
A 9x 6x 3x 18x OA 
B 6x 4x 2x 12x OB 
C 3x 2x 1x 6x OC 
 18x 12x 6x 36x =  T 
 DA DB DC   

 

 
In this example, it must be considered that no additional information allows the observer to 

modify his uncertainty as far as the interpersonal interactions at the meeting are concerned, so that 
the mean interaction between individual participants cannot be supposed to be different from the 
uniform undetermined amount x.  

There is, however, a new interaction distribution between the groups that form the new 
components of the potential system imagined by the observer, as a consequence of the conceptual 
aggregation of both persons and flows made by the observer. 

 
The interaction matrix in [2.44] is symmetrical, and the probability distribution that corresponds 

to this new flow distribution is given by the following series: 9/36, 6/36, 3/36, (relative to A); 6/36, 
4/36, 2/36 (relative to B); and 3/36, 2/36, 1/36 (relative to C). The sum of these probabilities is 
obviously equal to 1. 

By application of Shannon’s formula for entropy one obtains: 
 
[2.45] EABC  = ─ [(9/36)ln(9/36) + (6/36)ln(6/36) + (3/36)ln(3/36) + 

+ (6/36)ln(6/36) + (4/36)ln(4/36) + (2/36)ln(2/36) + 
+ (3/36)ln(3/36) + (2/36)ln(2/36) + (1/36)ln(1/36)] = 
= 2.02281 

 
The entropy potential relative to this new system of 3 components is given by 
 

[2.46]                        HABC  =  ln(32) =  2ln3 =  2.19722 , 
 
which, as expected, is greater than entropy  EABC  calculated by [2.45] for the new interaction matrix 
of [2.44]. In this case, at variance with the previous amorphous configuration of six components,  
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the system’s entropy does not coincide any more with the entropy potential. The difference between 
the two quantities, is now expressed by syntropy 
 
[2.47]                             SABC  = HABC  ─ EABC = 2.19722 ─ 2.02288 = 0.17434 , 
 
which represents the conceptual amount of order that has been introduced by the observer in 
reshaping the six-component system into another system of three components only.  

Moreover, it is interesting as well as important to remark that the transfer flows that form the 
interaction matrix of configuration [2.44] are all expressed by equations of the following kind 
 

[2.48]                                         * ;j k
jk

O D
T

T
=     (j, k= A, B, C) ; 

 
i.e., in this case, 
 

[2.49]          * 18 18 9
36

A A
AA

O DT x x
T

×
= = = ;     * 12 12 4

36
B B

BB
O DT x x

T
×

= = =   ; 

                   * 6 6 1
36

C C
CC

O DT x
T

×
= = =  

 

[2.50]                            * *18 12 6
36

A B
AB BA

O DT x T x
T

×
= = = =  

                                     * *18 6 3
36

A C
AC CA

O DT x T x
T

×
= = = =  ; 

 

[2.51]                          * *12 6 2
36

B C
BC CB

O DT x x T x
T

×
= = = =        

 
Let’s now calculate the base entropy of the new configuration [2.44] suggested by the observer. 
Because of the identity of the origin-semi base with the destination semi-base, the base entropy 

of that configuration is given by 
 

[2.52]                         * 2 ln ln lnC CA A B B O OO O O OE
T T T T T T

 = − × + + = 
 

 

                                          –2(0.5ln0.5 + 0.33333ln0.33333 + 0.16666ln0.16666)= 
                                       = 2.02281 ;  
 
which coincides with entropy EABC calculated in [2.45] above. 
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2.8 Some conclusions  
 

(1) In the three-component configuration [2.44] the entropy EABC associated with the interaction 
distribution { }*

jkT  coincides with the relevant base entropy *E , as it is also of the original 
amorphous configuration [2.36]. As proved in the next chapter, this fact is true in general, when – 
given a configuration whatever – all the elements of the random interaction matrix { }*

jkT  are 
obtained through equations of the kind introduced by [2.48] above. 

The principal meaning of the preceding example is that no artful manipulation of the symbols 
representing an amorphous configuration can change the nature of this: A full uncertainty about any 
observed set of “potential components” of a would-be system can never represent a viable system. 

 
(2) The same base configuration can be associated with all those systems which have an identical 

base. 
One example may be sufficient to show what this means. Consider the following two 

configurations relative to two different systems both sized N=3. 
 

[2.53] 

1.    Configuration upon survey 
 A B C Oi 

A 13.5 8.2 3.3 25.0
B 7.4 9.0 6.6 23.0
C 2.1 7.3 12.1 21.5
Dk 23.0 24.5 22.0 69.5

 

2.   Configuration as per equations [2.48] 
 A* B* C* Oi 

A* 8.273 8.813 7.914 25.0
B* 7.612 8.108 7.280 23.0
C* 7.115 7.579 6.806 21.5
Dk 23.0 24.5 22.0 69.5

 
Both configurations share the same base configuration and – therefore – also the same base 

entropy and base syntropy, given (remember [2.39]) by 
 

[2.54]                           * ln lnj j k kE P P Q Q 
= − + 

 
∑ ∑   and  * *S H E= − ,  

 
respectively, in  which {Pj} and {Qk} are defined by [2.13] and [2.14], respectively. 

The first of these two configurations represents a system whose interactions have been detected 
on the field, directly;  whereas the active matrix of the second configuration has been calculated by 
means of the “random flow equations” introduced with [2.48], using the base of the first 
configuration, as evidenced by the bold font.  

The second configuration, however, represents only a “reshaping” of an amorphous 
configuration of random flows. The entropy of the interaction matrix of this random configuration 
is in fact E3

* = 2.194334, which coincides with the base entropy E3
* shared by both the 

configurations [2.53]. The corresponding base syntropy is therefore given by  
 

                                         S3
*=.H3 ― E3

*= 2ln3 ― 2.194334 = 0.00289. 
 

The entropy associated with the active matrix of the configuration detected on the field is instead 
E3 = 2.088692.  

The corresponding syntropy is  S3 = 0.10853. 
As it is clear, an infinite number of possible systems sized N=3 can be associated with the same 

random configuration, which is therefore dubbed “the base configuration” of any other possible 
configuration with the same base.  
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Once established the base, the entropy E of all possible systems sharing the same base is 

necessarily less than the entropy E* of the associated base configuration, which entails that the 
syntropy S (degree of order) of all those systems is obviously greater than the syntropy S* 
pertaining to the relevant base configuration, as stated by the relations [2.43]; whereas the entropy 
potential H = 2lnN keeps constant with N for all possible configurations sized N.  

 
(3) As another important conclusion, there is to learn that not only can not the entropy of any 

system exceed the entropy of its base configuration, but also, perhaps surprisingly, that:  
 

(a) whatever the configuration of any system among all those that share a common base, the 
system’s achievable maximum level of organization (syntropy) is numerically equivalent to 
the entropy level  E* of the relevant base configuration; 

 
(b) whatever the configuration of any system among all those that share a common base, the 

system’s entropy can never collapse below the level numerically equivalent to the syntropy S* 

level of the relevant base configuration. 
 

Therefore, any base configuration fixes the coincident limits of maximum entropy/syntropy and 
corresponding minimums for the infinite variety of systems whose configurations share the same 
base. 

It is also important to remark that the common base configuration shared by the various systems 
shall basically be understood, along with the relevant system configurations, in terms of probability 
distributions; which - in particular cases - allows the various systems to differ from each other in 
terms of volumes of the transfer interactions. For - if one multiplies all the system’s flows by the 
same (any) factor a - no change occurs in the probability distribution of its active matrix as well as 
in its entropy and in its syntropy.  

The multiplication of all the elements of the system by the same factor a may be referred to as 
the “a-anamorphism” of the system. 

 
(4) As a major conclusion, one can state – on the basis of the concepts formulated so far – that 

any set of interacting “components” (as identified by the observer’s attention) forms a “viable 
system” only if the measured intensities of some (or all) of the observed interaction flows reveal 
significant differences with the values calculated for the same interactions by use of the random 
flow equations [2.48]. 
 
 
2.9 A “family” of evolution ellipses 
 

From the preceding conclusions it is now possible to draft a graph that may represent a “family” 
of evolution paths for any system sized N. 

Figure 2.1 in preceding Paragraph 2.5 has provided a first example of evolution ellipse. It 
concerns a geometrical representation of all the possible states of an evolving system which keeps 
its base configuration constant. Actually, the base configuration determines the eccentricity of the 
evolution ellipse and – therefore - of the ellipse’s shape. The eccentricity depends of the position 
(distance) of the fouces from the centre of the ellipse: The greater the base entropy, the greater the 
eccentricity, which is numerically quantified by the following difference (see also Figure 2.2 
below): 
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[2.55]                                            η = 
ln 1

ln ln
N S S

N N

∗ ∗−
= −   . 

 
For example, with reference to the configurations in [2.53], the eccentricity of the relevant 

ellipse is very high, as it is expressed by 
 
                                  η = 1 ― 0.00289/1.09861 = 1― 0.00263 = 0.99737 . 
  

Such a high eccentricity entails a very “flat” ellipse. The flatter the ellipse the greater the level of 
organization that the system may achieve on the given base configuration.   
 
 
FIGURE 2.2  
 
 
 
 
 
 

 
 

Axis of entropy potential H=2lnN 

 
The three ellipses of Figure 2.2 represent three different evolution paths for systems with an 

identical entropy potential  H = 2lnN.  This potential is representd by the ellipse’s major axis V1V2 . 
Points P1, P2, P3, P4 may also represent four different possible states of an evolving system. The 

coupled distances of these points from the two focuses of the respective ellipses represent the 
relevant amounts of entropy (blue-colour dotted lines) and syntropy (violet-colour dotted lines). As 
per the definition of “ellipse”, the sum of the coupled distances is always equal to the entropy 
potential H . 

The segments generically indicated by symbols  mS  and  mE  represent the minimum syntropy 
(coincident with the relevant base syntropy S*) and the minimum entropy, respectively, relative to 
the evolving systems. (As an example, in the figure  mS = FV1  and  mE = F’V2  represent the 
minimum syntropy and entropy, respectively, relative to the green-colour evolution path). 

Distances OF, OF1, OF2 with the “F”s in different colour font are the focal distances relative to 
the ellipses of the respective colour. 

 
It is of a major importance to point out that the system’s evolution does not necessarily keep the 

system on the same “elliptical” path, since the evolution is normally characterized by changes in the 
base configuration of the system. However, if the changes that intervene in the base configuration 
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do not involve changes in the value of the base entropy, then the system proceeds on the same 
elliptical evolution path.  

Actually, it should be clear that when the system’s configuration changes with no change in the 
value of its base entropy, the same base entropy may be associated with an infinite number of 
different base configurations that pertain to the same system; albeit the constancy in the value of the 
base entropy shall be considered as rather an exceptional aspect of the system’s evolution process.  

 
As a detail, which may also help draft the geometrical figure of an evolution path, consider that 

the semi-minor-axis b of any evolution ellipse can be calculated as 
 

[2.56]                     2 2 * *ln (ln ) ( )b N N S S H S S E∗ ∗ ∗= − − = − =  , 
 
in which  lnN – S*  is the distance of each focus from the ellipse’s centre O,  while bearing in mind 
that S* and E* in this formula are the base syntropy and the base entropy¸ respectively, relative to 
the system considered. 
 

 

3. Interaction flow equations – The system’s structure 
 
 

3.1 The random flow equation 
 
In the preceding chapter, the equations [2.48] in Paragraph 2.7 have heuristically introduced the 

formula for calculating the random flows { *
jkT } inherent in any given amorphous configuration. 

The associated random probability matrix { *
jkP } consists – by definition, remembering [2.12] – of 

the elements expressed by 

[3.1]                                            
*

*
2

jk j k
jk

T O D
P

T T
= = ;                          (  j, k). 

 
Actually, it is a definition of probabilities obtained as “compound probabilities”. A compound 

probability is the probability of coincident occurrence of two events having independent 
probabilities of occurrence. Definitions [2.13] and [2.14] have introduced Pj as the probability that 
any flow in the system is generated by source j, and Qk as the probability that any flow is bound for 
destination k. In absence of any other information concerning the flows, the theory of probability 
states that the probability for any flow to be (in the given time unit) both originated in j and bound 
for  k  shall be calculated as the “compound probability” expressed by the product of probability Pj  
and probability  Qk , i.e., by 

 

[3.1a]                            
*

*
2

j j k jkk
jk j k

O O D TDP P Q
T T T T

= = × = = ;            (  j, k); 
 

whence also the equations 

[3.1b]                                         * * j k
jk jk

O D
T P T

T
= =  ;                          (  j, k), 

 
which coincide with the heuristically obtained equations [2.48]. 
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These equations regard all possible amorphous systems, as already observed in the previous 
chapter.  

The equations for the determination of a random probability distribution { *
jkP } can also be 

obtained by considering that any random configuration may be variously constrained by the shape 
of its base, i.e., by its matrices {Pj} and {Qk}, which depend on how the random flows of the initial 
amorphous configuration have been aggregated by the analyst, whatever the purpose. Recalling the 
definitions [2.9], [2.10], [2.11], the probabilities to assess are subject to the following set of 
constraints:  

[3.2]                                          ψ1 *

,
1 0jk

j k
P= − =∑ ,  

[3.3]                                         ψ2
j * 0jk j

k
P P= − =∑ ;                           (  j)    

[3.4]                                         ψ3
k * 0jk k

j
P Q= − =∑  ;                        (  k),     

 
in which {Pj} and {Qk} are supposed to be known. However, these equations are not sufficient for 
an algebraic determination of { *

jkP }, because the number of the 2N independent constraint 
equations [3.2], [3.3], [3.4] is always less than the number of the N2 unknowns 21. In such cases, as 
to algebra, the possible solutions to the problem are of no use because they are infinite in number, 
thus leaving the problem undetermined.  

Apart from the constraints [3.2] to [3.4], no other condition constrains the interaction 
probabilities of the amorphous configuration, so that the remaining uncertainty (as also reflected by 
the relevant algebraic indetermination) may be viewed as the remaining degree of disorder that 
characterizes the interactions’ behavior. Then, the problem of determining the most logical values 
for the random flow probabilities in a “conditioned” amorphous configuration is of the same nature 
as that for the determination of the random flow probabilities { } { }21/jkP N=  obtained by equation 

[2.32a]. Therefore, the problem is to determine the { *
jkP } that allow the amorphous system to 

achieve its maximum level of entropy (disorder)  E* under the constraints [3.2], [3.3] and [3.4].   
Using the Lagrangian multipliers method again, the relative Lagrangian function L*  to write is: 
 

[3.5]                                    L*  =  αψ1 + jβ∑ ψ2
j + kγ∑ ψ3

k + E* , 

 
in which the 2N+1 coefficients α, βj and γk are the Lagrangian multipliers to be determined in 
function of the values found for { *

jkP }. 

The coordinates  { *
jkP } that identify the point of maximum value of the constrained entropy 

E*= * *

,
lnjk jk

j k
P P−∑  must satisfy the condition expressed by the following  N.2  equations: 

[3.6]                                                 
*

* 0
jk

L
P
∂

=
∂

,                                  (  j, k); 

                                                            
21 With the exception of the non-significant case of a system consisting of two components only. 
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which means  

[3.7]                             
*

*
* 1 ln 0j k jk
jk

L P
P

α β γ∂
= + + − − =

∂
,             (  j, k); 

from which 
[3.8]                                         * 1 j k

jkP e e eβ γα −= ;                              (  j, k). 

By substitution of this expression for *
jkP  in the constraint equation [3.2] one obtains 

[3.9]                                  
1 1

j k
e

e e
α

β γ
− =

∑ ∑  , 

which can in turn be used in [3.8], leading to 
 

[3.10]                             

j k
j

j jk
j

e e
eP

e e e

β γ
β

β βγ
= =

∑
∑ ∑ ∑

 ,                   (  j), 

whence also 
[3.11]                                   j j

j je P e APβ β= =∑  ,                        (  j), 

jA eβ= ∑  being a constant, whatever the system’s component regarded. 

In quite an analogous way, with reference to the { kQ }, one can obtain 

[3.12]                                  k k
k ke Q e BQγ γ= =∑  ,                         (  k), 

kB eγ= ∑ being also a constant, whatever the component regarded. Then, by substitution of the 

exponentials of the equation [3.8] with [3.9], [3.11] and [3.12], respectively, the searched solution 
to the problem is given by 

 

[3.13]                             *
2

j k j k
jk j k

AP BQ O D
P P Q

AB T
= = = ;                  (  j, k). 

The method, which has been followed to arrive at this solution, leads to the confirmation of the 
previous equations [3.1] found for the probability of random interaction flows as well as for the 
probable flow equations [3.1b].   

It is worth remarking that the same result as that shown by equations [3.13] is obviously obtained 
if a uniform mean efficacy u*

.=.U/.T is associated with each unit interaction flow of the system, in 
order to write the constraint equation [3.2] also in the following way: 

 

[3.2a]                                          ψ1’ 
* * *

,
0jk

j k
u P u= − =∑ , 

 
(U = u* T is the supposed overall “efficacy” of the system’s activity).  

Actually, there is to admit that a conventional “unit” mean uniform efficacy u*=1 has virtually 
been allowed for by constraint equation [3.2]. Then, what if the uniform efficacy is u* = 0 ?  The 
answer is that no substantial change modifies the result given by equations [3.13]: The first 
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constraint equation ψ1  would disappear as a constraint, but it would be re-introduced as a linear 
combination of the remaining two sets of constraint equations ψ2 and ψ3., in order to let the left hand 
side of equation [3.9] become e-1 instead of  eα-1, while all the subsequent steps, up to the conclusion 
[3.13], would remain unchanged. 

The preceding remark is worth the confirmation that the random flow distribution is not intrinsic 
to the system observed, but only the expression of the analyst’s maximum uncertainty (or lack of 
information) about the causes of the system’s activity. 

 
 

3.2 The equation of the “intentional” interaction flow 
 
The situation described by the analysis carried out in the preceding paragraph changes 

remarkably if – in general – the mean unit efficacy of the interactions varies with each of the 
interaction flows. 

As discussed in Paragraph 2.3 of the preceding chapter, the analyst, whose purpose is to describe 
a complex adaptive system, does implicitly assumes that the system’s components attach the 
expectation of some “programmed” effects to the interactions they generate. Indeed, the analysis 
concerns the representation of systems consisting of intentional interaction flows. 

Nevertheless, nothing can assure the analyst that the “efficacy” of every interaction flow of the 
system attains the expected level. On the contrary, daily common experience as well as scientific 
observations concerning both human interaction systems and any other kind of biologic interaction 
system, show that only part of the interaction activities meets the activators’ expectations 
completely. A large number of the “results” obtained through the interaction activity are 
unpredicted, to the extent to which they reveal incomplete or null or even detrimental to the 
system’s involved components. Perhaps, it is just such an endemic uncertainty, which affects the 
interaction efficacy, the factor that compels complex systems to become adaptive for survival. 

The awareness of this condition justifies the adoption of the Lagrangian multiplier method also 
for the determination of the intentional flow equation, accounting for a “generic mean efficacy ujk” 
supposedly asso-ciated with and proper to each unit of each intentional flow Tjk . 

Therefore, with a view to assessing in general the probability of occurrence  Pjk.=.Tjk./.T  for each 
interaction flow, the mathematical problem to solve can be formulated as follows: Find the {Pjk} 
that maximize the uncertainty function E.=.E(Pjk), under the constraints imposed by all the 
information that is - in general 22 - available to the analyst about the interaction system. Translated 
into formulas, it is: 

 
[3.14]                                         E = 

,
lnjk jk

j k
P P−∑ = maximum 

constrained by 

[3.15]                                        φ1 
,

0jk jk
j k

u P u= − =∑ ,  

[3.16]                                       φ2
j 0jk j

k
P P= − =∑ ;                    (  j)    

[3.17]                                       φ3
k 0jk k

j
P Q= − =∑  ;                   (  k),     

                                                            
22  In particular applications of the theory, the information available to the analyst might subject groups of 
variables to different or additional constraints. 
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in which {Pj} and {Qk} are supposed to be known, whereas both the term  u.=.U/.T  of  φ1  and the 
matrix of constant coefficients {ujk} are actually undetermined and are here used as logical 
instruments only. 

(Once in a while it is worth reminding the reader that the analysis does not regard the real 
reasons for the interactions observed, but regards only a way of reasoning upon subjective 
observations). 

The Lagrangian  L relative to the uncertainty  E  to maximize is now 
  

[3.18]                                L  =  λφ1 + jθ∑ φ2
j + kϑ∑ φ3

k + E , 

where λ., jθ , kϑ  are the N+1 Lagrangian multipliers associated with the respective  N+1 constraint 
equations φ1 , φ2

j , φ3
k . 

Again, the necessary condition required for the solution to the problem is expressed by the 
following set of  N.2 equations: 

 

[3.19]                                                     0
jk

L
P
∂

=
∂

,                                            (  j, k); 

which means  

[3.20]                            1 ln 0j k jk
jk

jkuL P
P

λ θ ϑ∂
= + + − − =

∂
,                      (  j, k) ; 

 
from which, after writing 1j jθ α− = ,  one obtains 
 

[3.21]                                        j jkk u
jkP e e eα λϑ= ;                                            (  j, k). 

 
The exponentials of the Lagrangian multipliers are now obtained by replacing the {Pjk} in the 

constraint equations with the corresponding values expressed by [3.21]. In particular, with the 
substitution in constraint equation [3.16], one obtains 

 

[3.22]                                       j jkk u
j

k
P e e eα λϑ= ∑ ,                                        (  j); 

from which  

[3.23]                                     j

jkk

j
j ju

k

P
e A P

e e
α

λϑ
= =
∑ ;                                   (  j). 

 
Then, by substitution with [3.21] in [3.17]: 
 

[3.24]                                         j jkk u
k

j
Q e e eα λϑ= ∑ ,                                     (  k); 

from which 

[3.25]                                      k

j jk

k
k ku

j

Qe B Q
e e

ϑ
θ λ= =

∑
   ,                                (  k). 
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Coefficients {Aj} and {Bk}, whose definition is here obvious, have been introduced for writing 
simplification only. The relations [3.23] and [3.25] can now be used to replace the respective 
exponentials in [3.21], to write: 

 
[3.21a]                              * jku

jk j k jkP A B P eλ= ,                                       (  j, k), 
 
after remembering – as found in [3.13] – that *

jk j kP P Q= , (  j, k). 
From [3.21a], after multiplication by the total amount T of detected flows, one derives the 

equation of the most probable distribution of intentional interaction flows in the system observed, to 
write 

 

[3.21b]                            jkuj k
jk j k

O D
T A B e

T
λ= ,                                    (  j, k), 

 
The determination of the 2N coefficients {Aj} and {Bk} is a problem to discuss.  
Suppose that the {µjk} are known and the actual {Pjk} have been determined after the baseline 

survey on the field, which provides the data for the calibration of coefficients {Aj}, {Bk} and 
Lagrangian multiplier λ. After passing from equations [3.21a] to the relevant logarithm, one obtains 

 

[3.26]                          *ln ln ln jk
j k jk

jk

P
A B u

P
λ+ + =  ;                              (  j, k). 

 
It is a system of N.2 inhomogeneous linear equations in the 2N+1 unknowns  lnAj , lnBk and λ, 

whereas {Pjk} and { *
jkP } - which determine the equations’ known terms – result from the survey 

data.  
The number of the equations is far exceeding the number of the unknowns, and algebra states 

that the solution to the problem is impossible if all the equations are independent of each other. 
Which is not true as to our case: It can be proved that all the matrix determinants of 
(2N+1)×(2N+1) order are null, because of intervening linear combinations affecting columns of the 
matrix. However, it is also impossible to state that univocal solution values for the unknowns can be 
determined, whatever the matrix of the equation system’s coefficient. Actually, in the coefficient 
matrix of equations [3.26] it is always possible to find non-null minors of 2N× 2N order, so that 
solutions to the problem can be obtained by assigning arbitrary values to any of the unknowns of 
the independent equations. The number of possible solutions is infinite. 

An empirical – though correct method for establishing workable values for the unknowns, 
successfully tested in most similar cases, could be that of a reiterative procedure for each of the 
equations [3.21a], after fixing an arbitrary value for one of the relevant unknowns.  

For sure, the use of the intentional flow equations in the form provided by [3.21a] or [3.21b] is 
rather inconvenient for the analyst.  

One logical remedy is considering that it is always possible to find suitable arbitrary values for 
either {Aj} or {Bk} in order to obtain  

  
[3.26]                          lnAj + lnBk = ln(AjBk) = lnh = constant,                 (  j, k). 

 
Constant parameter  h  will be referred to as “the system’s state factor”. 
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Then, by substitution in [3.21a] and in [3.21b], the intentional flow probability equations and 

the intentional probable flow equations become, respectively,  
 

[3.21c]                                        * jku
jk jkP hP eλ= ,                                     (  j, k), 

 
and 

[3.21d]                            *jk jku uj k
jk jk

O D
T h e hTP e

T
λ λ= = ,                      (  j, k). 

 
From either sets of equations one obtains: 
 

[3.27]                                     *

,

1
jku

jk
j k

h
P eλ=

∑
  , 

 
which, replacing h in [3.21.c], leads to the Bayes’ equations for conditional probabilities, as 
expressed by 

[3.21e                                     
*

*

,

jk

jk

u
jk

jk u
jk

j k

P e
P

P e

λ

λ=
∑  ;                                     (  j, k). 

 
Actually, as I could show elsewhere,23 equations [3.21e] can be obtained also through the 

Bayesian inference that in the theory of probability concerns the conditional probabilities of a 
distribution. 

 
The interaction flow equations formulated so far regard standing (unstable) states of the system, 

since the assessment of the interaction flows and relevant probabilities is based on the findings of a 
survey: This is carried out upon the implicit assumption that the system is conventionally supposed 
to be in a state of temporary equilibrium, in the obvious awareness that the system evolves. In any 
case, the same equations shall be considered as the baseline equations that describe the original 
standing state of the system’s evolution.  

 
 

3.3 The intents associated with flows – Relation coefficients 
 
The foregoing paragraph has omitted comments on the determination of λ, the third Lagrangian 

multiplier of the equations [3.20] and [3.26]. The value of this parameter depends on the 
measurement units used for quantifying the system’s interaction flows: Its basic role is providing  
the relevant exponentials with a counterbalancing dimensional factor that makes {λujk} a matrix-set 
of quantities with no physical dimension. For the purposes of the theory, the isolated determination 
of λ is of quite a secondary importance, whereas these exponents, i.e., the matrix {λujk} – as 
announced with the definition [2.17] introduced in Chapter 2 – are in themselves more important as 

                                                            
 
23  M. Ludovico, L’evoluzione sintropica dei sistemi urbani, Bulzoni, Rome 1988 -1991, pp. 89 to 98. 



Syntropy 2013 (3): 50 -153 ISSN 1825-7968
 

94 

 

matrix of the “intents” that form the “structure” of the system. The respective exponentials, given 
by 

[3.28]                                       jk jku
jk e eλ µε = =  ,                                   (  j, k), 

 
constitute the matrix { jkeµ }={εjk} of the system’s “relation coefficients”, as obviously determined 
– considering either equations [3.21c] or [3.21d] – by 
 

[3.29]                              * *
jk jk jk jk

jk
jk jk

P T R
e

hP hT h
µε = = = =   ,                      (  j, k), 

 
in which the ratios  Rjk.=.Pjk./.P*

jk.=.Tjk /.T*
jk  will be referred to as “flow quotients”, for they 

represent the deviation of the actual interaction flows with respect to the respective theoretical 
random flows of the system’s base configuration.   

As already introduced in Chapter 2, both the intent matrix {µjk} and the relation matrix {εjk} may 
indifferently be referred to as “the system’s structure”.  

From the foregoing definitions, the intents of the system’s interaction units are expressed in 
function of the system’s flows and state factor h: From [3.29] one obtains 

 

[3.30]                            *ln ln lnjk jk
jk

jk

R T
h

h T
µ

  
= = −       

;                        (  j, k) . 

 
These equations give the opportunity to identify the meaning of state factor h. There is in general 

to consider that the flow ratios Rjk may have any value, including 1, when one or more flow 
probabilities coincide with the respective probabilities of the system’s base configuration (e.g. 

abP = *
abP  or/and  cdP = *

cdP , etc.). Which is obviously possible, considering that not all of the 
system’s mean interaction “intents” differ necessarily from the mean uniform intent that can be 
associated with every interaction unit of the respective base configuration. 

Therefore, when  Rjk.=1  the equations [3.30] tell us that the value for h is also expressed by 
 

[3.31]                                  * ln1 ln lnh hµ = − = − , 
 
in which  µ* is the mean uniform intent associated with every interaction unit of the system’s base 
configuration. As a consequence, the equation [3.30] can also be written 
 

[3.30a]                           *
*ln lnjk jk

jk
jk

R T
h T

µ µ
  

= = +       
;                       (  j, k)   

 
and the equations [3.21c] and [3.21d] can also be written as follows: 

 

[3.21e]                                       
*( )* jku u

jk jkP P eλ −= ,                                (  j, k), 
and 

[3.21f]                                        
*( )* jku u

jk jkT TP eλ −= ,                              (  j, k) . 
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In fact, from equation [3.31], it is immediately evident that 
 
[3.31a]                                     

* *uh e eµ λ− −= = , 
 
with u* representing again the mean uniform efficacy of the base configuration’s interaction flows. 
In this connection, it is worth observing that the general equations [3.1] and [3.13] for the random 
flow probabilities can also be written as 
 

[3.13a]                     

*

*

*
*

2 22

j k j k j k
jk

O D O D e O D
P h e

T TT e

µ
µ

µ

 
 = = =
 
 

 ,                 (  j, k) . 

 
Note also that equation [3.31a] expresses the only value for h that confirms Bayes’ equations 

[3.21e] for the conditional probabilities of the distribution. 
 
 

3.4 The structure of the system 
 
The discussion about the meaning of the state factor h is a way for introducing the concept, 

proper to the theory, of the system’s structure. 
Equation [3.31] draws attention to the fact, previously noted.24, that the idea of a non-null intent 

is implicitly associated by the analyst also with the random flows of amorphous configurations, in 
particular with the flows of the system’s base configuration. Indeed, the identification of active 
components that differ from one another depends on the cultural baggage of the observer. The 
aptitude for recognizing any system is a shaping activity of human intelligence, which can seize the 
existence of relationships between the identified components. Such relationships entail interaction 
flows whose intent is non null in principle, but it is instead unknown because of a total lack of 
information about the supposedly existing interactions. “Uniform intent”, as indicated by the 
equation [3.31] means only that the observer cannot at once distinguish the interactions’ intents 
from one another. 

In turn, the shape of the system’s body, as formed by the identified and selected components, 
bears in itself the amount of information inherent in the observer’s choice. The shape of any system 
is primarily given by how the interactions concentrate in the relevant sources and destinations, as 
shown by the figures that form the base of the system. Such a shape constrains the distribution of 
the random interaction flows whose intensity – for probability reasons – is in all cases directly 
proportional to the size/importance of both the sources and the destinations of the interactions.  

The degree of order, the base syntropy of any base configuration coincides with the syntropy 
associated with the distribution of the interactions among the sources and the destinations of the 
“random” system. It is a coincidence that induces one to recognize that the uniform mean intent 
associated with every unit of the “random flows” is just the “necessary” basic unit intent that the 
observer implicitly assigns to the interactions of the system he shapes.  

In other terms, the uniform mean intent expresses the “natural” minimum need for organization 
that can justify the recognition of the system made by the observer; who is induced to guess (as it 
will later be confirmed) not only that “his” system entails a direct proportionality between “basic 

                                                            
24 Remember the comment on constraint equation [3.2a], Paragraph 3.1, p. 48, as well as the previous 
comment on inequalities [2.35] in Chapter 2, p. 33. 
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intent” and base syntropy, but also that the coefficient of proportionality is equal to 1, in order to 
write 

 
[3.32]                                           * *ln h Sµ = − =  , 

 
considering that the dimension-less coefficient – which connects two dimension-less quantities - 
does not depend on the measurement system adopted for the intents. Therefore, also: 

 

[3.33]                                * **

,

1 1 1
jk S

jk
j k

h
P ee eµµ

= = =
∑    , 

 
which helps clarify the meaning of “state factor” h: This parameter is equal to “1” only in the 
“boundary” case of * 2{ } {1/ }jkP N= , in which case  E*.=.E =.lnN2. and S*=.S.=.µ* =.0 ; whereas, in 
all other cases, it is  

[3.34]                             

*
* 2 *(ln )

2 0
E

S N E eh e e
N

− − −= = = →     as   N →∞  .   

 
Therefore, values for h are possible only according to the following range of values 
 

[3.35]                                           0 < h < 1 ,  
 

because the numerical value for 
*Ee can neither exceed nor attain N.2, below which its ratio to N.2 is 

always less than 1 and tends to zero as N  tends to infinite. 
 
 

3.4.1 Structure potentials 
 
Remembering the definition [3.28] and the equations [3.13] and [3.21c], one can write 
 

[3.36]                       * jku
jk jkP hP eλ= 2

jkj k
j k jk

O D
h e hP Q

T
µ ε= = ,                 (  j, k) 

 
By separate sums of these equations, first on k and after on j, one gets 
 

[3.37]                     
1

k jk
k

Q
h

ε =∑     and    
1

j jk
j

P
h

ε =∑  ,   respectively,      (  j, k). 

 
From which, clearly, also 
 

[3.38]                              1j jk k jk
j k

hP hQε ε= =∑ ∑  ,                                 (  j, k) . 

After setting 
 

[3.39]                            Yj = hPj ,  ( j),   and    Xk = hQk ,                            ( k), 
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the two systems [3.37] of N equations each become 

 
[3.37a]                                      1j jk

j
Y ε =∑  ,                                          ( k), 

[3.37b]                                      1k jk
k

X ε =∑ ,                                          ( j) . 

 
Name Yj and Xk  “structure potentials Y” and “structure potentials X”, respectively, and 

consider that these quantities are invariant with the system’s structure {εjk}: The 2N structure 
potentials X and Y do not change with the system’s configuration until the system’s structure {εjk} 
remains unchanged. Given the structure {εjk}, the unknown potentials are determined by solution of 
the equation systems [3.37a] and [3.37b], in which the coefficient matrix of the former system is the 
transposed of the latter. 

Accounting for the definitions [3.38], it is possible to write the following two equations: 
 

[3.40]                                       j kh Y X= =∑ ∑ , 
 
which regards systems in standing states only. 

From [3.39] consider also the obvious definitions 
 

[3.41]                            j
j

Y
P

h
= ,  ( j) ,      and        k

k
XQ
h

=  ,  ( k) .   

   
 

3.4.2 Canonical and semi-canonical equations 
 
Given the system’s structure, the structure potentials allow a different way to write both the flow 

probability equations and the probable flow equations.  
From any of the flow equations or flow probability equations, e.g., from [3.36], the use of the 

structure potentials leads to: 
 
“Canonical flow probability equations”: 
 

[3.42]                                      j k
jk jk

Y X
P

h
ε=  ,                                  (  j, k) . 

 
“Canonical probable flow equations”: 
 

[3.43]                                     
j k

jk jk

TY X
T

h
ε=  ,                                (  j, k) .   

 
Semi-canonical “Flow generation probability equations”: 
 
[3.44]                                   jk j k jkP P X ε=  ,                                      (  j, k) .    
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Semi-canonical “Flow destination probability equations”: 
 
[3.45]                               jk j k jkP Y Q ε=  ,                                          (  j, k) .   
 
Semi-canonical “Flow generation equations”: 
 
[3.46]                              jk j k jkT O X ε=  ,                                          (  j, k) .   
 
 Semi-canonical “Flow destination equations”: 
   
[3.47]                             jk j k jkT Y D ε=  ,                                            (  j, k) .   
 
“Canonical random flow probability equations”: 
 

[3.48]                            *
2

j k
jk

Y X
P

h
=  ,                                                (  j, k) .  

 
Semi-canonical “random flow equations”: 
 

[3.49]                            *
2

j k
jk

TY X
T

h
=  ,                                               (  j, k) .         

 
The foregoing definitions and equations have a major role in the description of evolution 

processes of the system.   
 
 

3.4.3 The system’s structure and stability – A few comments  
 
 At theoretical level, the relation coefficients deserve the label of “the system’s structure”, 

although they are unknown in starting practical applications of the theory. The two preceding 
paragraphs have shown that the flow intents, in the form of relation coefficients, are in themselves 
the “cause” of the system’s interactions. Configurations and viability of systems are substantially 
depending on the set of the relevant relation coefficients {εjk}, with no need for additional support.  

Besides, it is also necessary to remark that the system’s configuration may change, as it happens 
during evolution transition phases, with no change in the system’s structure {εjk}. Consider that the 
state parameter h relates only to standing states (temporary equilibrium states); thus, the equations 
[3.40], [3.42], [3.43], [3.48] and [3.49] do not apply to transition phases, in which the products 
{hPj} and {hQk} shall be replaced by {Yj} and {Xk}, respectively, since the system’s base (i.e., {Pj} 
together with {Qk}.) changes from phase to phase. The mentioned replacements are possible thanks 
to the equations [3.37a] and [3.37b], which make the structure potentials depend on the system’s 
structure {εjk} only. In fact, by definition, during transition phases there is no equilibrium at all: 
These phases of the evolution involve continued changes both in the system’s base and in the 
interaction distribution. A new state parameter h can be re-determined only if the sequence of the 
transition phases ends in a new standing state through a transformation of the system’s structure. 

As previously argued, state factor h is related to base syntropy S*, which in turn depends on the 
features of the system’s base. Considering also the range of the possible values for h (remember 
[3.35]), an appropriate theoretical interpretation of h is that this parameter indicates the probability 
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for the system to lose its temporary equilibrium state. In simpler terms, there are good reasons for 
assuming that h indicates the degree of instability of the system’s equilibrium.  

 
In analyzing the flow probability equations, the mathematical expression in the right-hand side 

of the equations may be viewed as consisting of three joint “sections”. The first section is formed by 
state factor h, the second section by random flow probability *

jkP , the third section by relation 
coefficient εjk . The three sections multiply each other: As a simple factor, state factor h - which is 
always less than 1 – diminishes probability *

jkP  linearly, whereas relation coefficient εjk modifies 
the same probability exponentially with the value of the interaction’s intent.  

 
Looking at the definitions [3.41] given for {Pj} and {Qk} through the introduction of the 

structure potentials, the ratios of these to h do actually form two new probability distributions, in 
each of which the sum of the probabilities equals 1. Thus, each ratio, Yj./.h or Xk./.h, seems just 
indicating how stable is the relevant probability Pj or Qk in the system’s standing state of temporary 
equilibrium: The greater its “instability” h the smaller the probability that the system’s components 
remain in their present state of interaction sources and destinations. 

Using different words, state factor h might also be considered as a factor of uncertainty 
concerning the assessment of either the interaction flow probability or of the interaction flow in the 
system’s temporary equilibrium state described by the observer.  

 
If this interpretation of parameter h is appropriate, then – as an obvious consequence – the base 

syntropy S*
 can simply be assumed to represent the system’s temporary degree of stability since 

(remember the equations [3.32] and [3.33]) “instability” h  decreases exponentially with S*. 
Because of the range [3.35] of variability for h, one should conclude that there is no state of 

permanent stability for any recognizable system. Any viable system should be thought of as 
intrinsically unstable and therefore evolving. 

 
 

 3.4.4 The meaning of “unstable equilibrium state” 
 
The “system’s unstable equilibrium state” (i.e., the original standing phase) is a conjecture made 

by the observer before starting field surveys aimed at assessing the intensities of the specific 
interactions observed or guessed. 

The observer supposes that, at least during the period in which the surveys are carried out, the 
overall state of the observed system does not change significantly, notwithstanding possible – and 
accounted for – oscillations of the measured quantities around average values that – in the 
observer’s view – keep substantially constant. 

It is a basic assumption, which rests on statistical criteria, measurement methods and 
approximations that the observer considers as appropriate to the study case. 

On the one hand, the logic of the theory expounded here is an adequate support to the relevant 
undertaken applications only if the statistical methods and the measurement operations on the field 
are reasonable and correct. 

On the other hand, the theory’s equations provide the observer with the necessary instruments to 
check whether the findings of the surveys and the results of the measurement operations match the 
theoretical expectations in a satisfactory way.  

The intrinsic instability of any evolving system entails inevitable problems in the measurement 
operations that regard the quantitative description of the systems observed. Substantially, the 
reliability of both survey findings and calculation results depends on the degree of approximation 
that the observer deems acceptable or useful to the purposes of the analysis. 



Syntropy 2013 (3): 50 -153 ISSN 1825-7968
 

100 

 

Moreover, one major problem concerning the applications of this theory to real cases is that the 
“proper time” taken by the evolution of viable complex systems is not the “time” of Mechanics as 
measured by watches and astronomical calendars. The “evolution time” consists in the systems’ 
“aging”, which depends basically on the amount of entropy (disorder, energy dissipation, etc,) 
produced by the unceasing gestation labor inherent in the evolution processes. It is a point of 
philosophical trouble, for it seems actually impossible to “translate” aging processes in the precise, 
objective terms of “mechanical time”. That is why also the watch or calendar duration of the 
system’s equilibrium supposed by the observer might not correspond to any organic stationary state 
of the system under observation. 

The preceding remarks intend to anticipate some insuperable difficulties encountered in using 
this theory for drafting scheduled events, which should instead be replaced by outlines of probable 
evolution trends, whose occurrence cannot be put in a precise correlation with astronomical dates. 
Who has some familiarity with meteorological models can better understand what I mean. 

 
 

3.5 Corollaries  
   
(1) In commenting on the constraint equation [3.15], I drew attention to the impossibility for the 

observer to assess the mean efficacy {ujk} of every interaction flow, for no objective data can in 
general be collected as to the individual “intents” that motivate the interactions, especially when the 
system’s activators involve human beings. Nevertheless, the theory’s equations formulated so far 
allow the analyst to assess the intent matrix {µjk} once completed the survey operations. The 
equations [3.0] and [3.33], in fact, enable one to write 

 

[3.50]                   * *
*ln ln ln 2lnjk jk

jk jk
jk

R T
S R N E

h T
µ

  
= = + = + −       

,         (  j, k) . 

 
in which, as seen with [2.39] and [2.22], base entropy can be expressed in two different ways as 
follows: 

[3.51]              * 1ln ln 2ln ( ln ln )j j k k i i i iE P P Q Q T O O D D
T

 = − + = − + 
 
∑ ∑ ∑ .                           

 
As to the analyst, the matrix of intent {µjk} is significant in itself, with no need to specify the 

measurement units that quantify the mean efficacy ujk of every interaction flow and the 
corresponding value for coefficient λ.  

Therefore, the equation [3.50] achieves one of the theory’s announced goals, which is to express 
all the quantities involved by the theory in terms of interaction flows, or – equivalently – in terms of 
flow probabilities.   

 
(2) From the equations [2.43] of Chapter 2, the following significant state parameter can be 

formulated: 
 

[3.52]                                           
* *

* * *1S S E E EF
E E E
− −

= = = −    ;       

 
which indicates how much the system’s activity deviates from that of the respective base 
configuration. The greater F with respect to its possible maximum the greater the intensity of the 
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“organized activity” that characterizes the system’s interaction distribution. State parameter F is 
referred to as “the system’s strength”. Its possible maximum value is conditioned by the ratio 
E/.E*, considering that  E.≤.E* always (See also Figure 2.1, Page 34). 

  
Constraint equation [3.15] defines a mean efficacy u = U/.T associated with every interaction unit 

in the system, so that also a corresponding mean intent µ.=.λu can be defined by the product of λ 
with the same equation, to obtain 

 
[3.53]                        

, ,
jk jk jk jk

j k j k
u P u P uλ λ λ µ= = =∑ ∑ . 

 
In this equation each quantity µjk.=.λujk can be replaced by the respective ln(Rjk./.h), as it has been 

defined for the equations [3.29], page 53; in order to write (allowing also for the flow probability 
equation [3.35]) 

 
[3.54]                           *

, , ,

ln ln lnjk jk jk jk jk
j k j k j k

P P P P h Pµ = − −∑ ∑ ∑ . 

 
Remembering the random flow probability equation [3.1], the second sum in the above equation 

can be written as 
 

[3.55]                             *

, ,
ln ( ln ln )jk jk jk j jk k

j k j k
P P P P P Q− = − +∑ ∑ ; 

 
from which, developing its right-hand side, one obtains  

 
[3.56]                                            

* *

,
lnjk jk

j k
P P E− =∑ .  25 

Therefore, accounting for [3.32], equation [3.54] becomes 
 

[3.57]                                                    µ = ─ E + E*+ µ* , 
 

or else, because of conjecture [3.32] and remembering [2.43], also 
                                                            
25  To understand why this equation is true, consider the following example that regards a 3-component 
system. From the right-hand side of the equation [3.55] above: 

             
3 3

1 2 3
, 1 1

ln ( ln ln ln )jk j j j j j j j
j k j

P P P P P P P P
= =

= + + =∑ ∑  

                                         
11 1 12 1 13 1

21 2 22 2 23 2

31 3 32 3 33 3

ln ln ln
ln ln ln

ln ln ln

P P P P P P
P P P P P P

P P P P P P

= + + +
+ + + +

+ + +

Analogously:                                            
3

, 1

lnjk k
j k

P Q
=

=∑     

 

 
 
 
→P1lnP1 + 
 
→P2lnP2 + 
 
→P3lnP3 + 
+ 
→Q1lnQ1+ 
    Q2lnQ2+ 
    Q3lnQ3 =  → 

 
 
 
 
 
 
 
 
 
 
 
–E3

*, 
which represents the opposite of the base entropy equated by [3.56], where it is multiplied by –1. In this 
connection, remember how [3.51] defines E*. 
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[3.58]                                   µ – µ* =  µ – S* = E*– E = S – S* , 

 
which implies  

 
[3.59]                                                 S = µ = λu  .  

 
That is: The system’s syntropy (in its meaning of degree of organization) is directly proportional 

to the mean efficacy of the system’s interaction unit. 
 
(3) Besides, it is interesting to note that 
 

[3.60]                             * * * *

, ,
ln ln –jk jk jk jk

j k j k
P P P P E= =∑ ∑ . 

 
Despite its illogical appearance, this significant equation shows that the probability values of the 

system’s flow distribution are subjected to an additional hidden constraint, which is implicit in the 
constraints expressed by the relations [3.15] to [3.17].  Such a condition can also be written as 

 
[3.61]                                   * *

,
( ) ln 0jk jk jk

j k
P P P− =∑ . 

 
 

3.6 The “implicit flow”: The external component’s self-interaction 
 
The use of the whole set of the foregoing equations presupposes that the system is closed, which 

means that all the system’s interaction flows are known. The theory has no possibility of viable 
application if the system is not properly closed. 

However, the necessary baseline-survey, which shall be carried out to quantify the interactions 
relevant to the original standing state of the system, cannot detect the self-interaction that pertains 
to the external component. As previously pointed out, the external component is “the rest of the 
universe” with respect to the main system identified by the observer. Instead, the interactions 
between each component of the main system and the external component can be surveyed and 
quantified: Think – for example – of the export-import flows relative to the production sectors of 
any regional or national economic system. 

 
This paragraph intends to show a possible procedure to “calculate” the “implicit flow” (i.e., the 

self-interaction of the external component), which is viewed as an implication of the activity 
characterizing the main system. Intuitively, the main system’s activity entails a specific 
complementary activity inside the rest of the universe, to the extent to which the latter interacts with 
the main system identified by the observer. Referring again to the example of a regional economic 
system, the rest of the universe does necessarily mobilize its internal economy also in consequence 
of its relationships with the main system under study. Several different examples are also possible, 
obviously. 

The point to grasp is that the self-interaction missed by the baseline survey is not the whole self-
interaction of “the rest of the universe”, but only that part of the inner activity of the external 
component that is both connected with its relationship with the main system and of the same kind as 
that of the main system. For example, if the observer/analyst deals with vehicular traffic flows 
between settlements of activities (of which his system may consist), then the relevant implicit flow 
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involved inside the external component will also consist of vehicular traffic flows between 
settlements of activities “within the rest of the universe”. 

The self-interaction of the external component is “implicit” in the way in which the 
observer/analyst recognizes and describes the main system he has identified. This is a basic point to 
bear in mind while managing concepts relative to this theory. 

Therefore, only after the determination of the implicit flow the theory’s system can be considered 
as closed and ready for useful simulations. 

 
 

3.6.1 Calculation of the “implicit flow” 
 
In a view to proceed on in a clearer way, I deem it convenient to start soon from a numerical 

example. 
Consider the following results of a hypothetical survey carried out to detect the interaction flow 

matrix of a four component system, in which Too stands for the missing implicit flow: 
 

                      Four-component system  -  interaction flow matrix 

Component labels 0 1 2 3 ORIGINS  
                 0 Too 15 12 16 43+Too Oo 
                 1 18 21 22 18 79 O1 

[3.62]               2 7 4 16 9 36 O2 
                3 9 10 13 19 51 O3 

DESTINATIONS 34+Too 50 63 62 209+Too =  
 Do D1 D2 D3  T 
 

The implicit flow  Too  is the unknown to be determined. Statistically, the interaction flows 
recorded in [3.62] are probable flows, which, according to the theory, are in general expressed by 
the equation [3.21], that is by 

 

[3.63]                                         jkuj k
jk

O D
T h e

T
λ= ,                            (  j, k). 

 
With respect to this formula, quantities Oj , Dk and Tjk are known parameters relevant to every 

flow except Too. The system’s total interaction T can be determined only after calculating  Too. 
Instead,  an usable value for ratio  h./.T  can be determined after assigning an arbitrary value to any 
one of the N2 intents {µjk} of the system represented. To this purpose, consider that – whatever the 
measurement system adopted – it is always possible to assume the value of any intent as the intent 
unit value. One practical criterion may be adopting the smallest relation coefficient of the system as 
the exponential of the intent unit, which means to set the same exponential coefficient equal to  
e,=.2.7182818… 

 
Moreover, allowing for the formula [3.63], it is possible to write: 
 

[3.64]                                  jk jk
jk

j k

Th he
T T O D

µ ε= =   ,                          (  j, k). 
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Clearly, irrespective of the ratio h./.T, the smallest relation coefficient is given by the smallest 

ratio jk

j k

T
O D

. From the matrix of the main system, which concerns the components 1, 2 and 3 only, 

one obtains the minor matrix jk
h
T
ε 

 
 

 as follows:  

 

  1 2 3 
                1   5.3164x10-3 4.4203x10-3 3.6749x10-3 
[3.65]                    2   2.2222x10-3 7.0546x10-3 4.0322x10-3 
                3   3.9215x10-3 4.0460x10-3 6.0088x10-3 

 
The smallest element of this matrix is  
 

                                            21
h
T
ε =2.2222x10-3 .  

 
Therefore, assuming  µ12.=1 entails ε21= e1= 2.7182818, by which the value of ratio  m.=.h./.T can 

be calculated accounting also for flow T21 : 
 

[3.66]                 421

21 2 1

4 8.1750988 10
2.7182818 36 50

Thm
T O Dε

−= = = = ×
× ×

. 

 
[Note, by the way, that the value found for m enables the analyst to calculate all the system’s 

intents through the following obvious equations:  
 

[3.67]                     *ln ln lnjk jk jk
jk

j k jk

T T R
O D m T h h

µ
     

= = =             
,                (  j, k), 

 
the measurement system being established for {µjk} (and implicitly also for {ujk} and λ)  by  µ21.= 1, 
as per the analyst’s decision]. 

Because of the range of the values of h and because of [3.66], it is evidently true that 
 

[3.68]                                           h = mT < 1 .    
 
 This inequality establishes the upper limit to the value Too of the implicit flow, since, defining 

T’=.T–Too  whence also  T = T’+.Too , and so replacing T  in [3.68], one can write 
 

[3.69]                                         Too.< 1/m –T’ . 
 
Then, from [3.66], 1/m =.1223.2268 and, from [3.62], T’.= 209; so that the upper limit to the 

value of the implicit flow is determined as 
 

[3.70]                                      Too< 1014.2268 . 
 
Too is subjected to a couple of additional constraints that are connected with the two different 

ways in which base entropy can be expressed: One way of the mentioned two is showed by the 
following expression derived from the equation [3.51]: 
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[3.71]                                   ( )*

0

12 ln ln ln
N

i i i i
i

E T O O D D
T =

= − +∑  . 

 
Therefore, set  Oo = Oo’.+Too  and  Do.=.Do’+Too , it is possible to write (accounting also for        

T = T’+Too): 

[3.72]                            

*

' ' ' '

2 ln( ' )

( ) ln( ) ( ) ln( )
'

oo

o oo o oo o oo o oo

oo

E T T

O T O T D T D T L
T T

= + −

+ + + + + +
−

+

  ,                             

in which            

[3.73]                                           ( )
0

ln ln
N

i i i i
i

L O O D D
≠

= +∑ . 

 
The other way to express base entropy is provided by [3.34], by which – allowing for [3.66] – it 

is possible to write: 
 

[3.74]                             E* =.ln(hN2) = ln(mN2T) = ln(mN2)+ln(T’+.Too). 
 
After comparison of this equation with [3.72] above, one obtains the following function of Too 

equated to zero : 
 

[3.75]                       

' ' ' '

2

( ) ln( ) ( ) ln( )( )
'

ln( ' ) ln( ) 0,

o oo o oo o oo o oo
oo

oo

oo

O T O T D T D T Lf T
T T

T T N m

+ + + + + +
= −

+

− + + =

 

 
in which, when – for example – referred to the system’s configuration [3.62], the known term is 

 

[3.76]                         ln(N2m) = ln(16x8.1750988x10-4) = –.4.3366588. 
 

It can easily be proved that function f(Too), in the interval of the values for Too expressed by 
 

[3.77]                                             0 ≤  Too < 1/m –T’ , 
 

is continuously increasing with Too.  The function is comprised between a lower extreme  f(Too) < 0  
and an upper extreme  f(1/m–T’).>.0  in such a way so as to make the Cartesian curve of f(Too) 
intersect the abscises once only. At the intersection, that is at  f(Too) = 0, the value of Too at that 
point is the value searched for the implicit flow. 

 
A rather quick demonstration concerning the uniqueness of the intersection of  f(Too)  with the 

abscises  Too  can be given as follows. 
Should function f(Too), in its definition interval, intersect the abscises more than once, it should 

also be possible to determine at least one maximum or minimum value for the same function: This 
means it would be possible to obtain a significant solution for the following equation 

 

[3.78]                                                    
( ) 0oo

oo

df T
dT

=  . 
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For writing simplification purposes, let’s adopt a formal change in the symbolism of the 

function’s variables, as per the following definitions: 
 

[3.79a]                            'o oox O T= +  ;        1( ' ' ')o oO x O T
m

≤ < + −  
 

[3.79b]                           'o ooy D T= +  ;        1( ' ' ')o oD y D T
m

≤ < + −  

[3.79c]                           ' ooz T T= +  ;          1( ' )T z
m

≤ < . 
 
By replacement of the symbols of f(Too) with the just defined ones, the same function becomes 
 

[3.80]                     2ln ln( , , ) ( ) ln ln( )oo
x x y y Lg x y z f T z N m

z z z
≡ = + + − +  . 

 
Equation [3.78] implies that the necessary condition for the existence of a point of maximum or 

minimum value for  f(Too) ≡ g(x,y,z)  is also expressed by the following simultaneous equations: 
 

[3.81]                                0g
x
∂

=
∂

 ;       0g
y
∂

=
∂

 ;       0g
z

∂
=

∂
  . 

 
Thus, after calculation of the above partial derivatives, one finds: 
 

[3.82a]                       
ln 1 0g x

x z
∂ +

= =
∂

;   whence     x = Oo’+Too = Oo = e-1 . 
 

[3.82b]                       
ln 1 0g y

y z
∂ +

= =
∂

;   whence    y = Do’+Too = Do = e-1 . 

 

 [3.82c]                      ( ln ln ) 0g z x x y y L
z

∂
= + + + =

∂
, 

 
which, remembering the definitions given by [3.73] and [3.80], leads to the following absurd 
assertion: 

[3.83]                                      ( )
0

ln ln
N

i i i i
i

T O O D D
=

= +∑ . 

 
On the other hand, the results provided by [3.82a] and [3.82b] are also absurd, considering that 

such results would be true in general, irrespective of the size and configuration of the system. 
Consider also that these same results could analogously be obtained with reference to any other 
generic self-interaction Tjj ≠Too, should Tjj  be the only unknown self-interaction to be determined for 
the system. Therefore, function f(Too) has neither points of maximum nor points of minimum, for the 
tangent to its Cartesian diagram is in no point parallel to the abscises. Moreover, if the appropriate 
implicit flow that satisfies the equation [3.75] is Too > 0, then  Too= 0 implies  f(Too=0)< 0, 
necessarily.  

Instead, any other Too > 0 greater than that which satisfies the equation [3.75] renders f(Too) > 0 . 
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Conclusion: As it was to prove, f(Too) is a continuous function that increases with Too ; the 

function is in general comprised between a negative lower extreme and a positive upper extreme.  
 
Then, the Cartesian graph representing the function intersects the abscises in one point only, which 
corresponds to the searched value for the implicit flow Too . 

 
It is now possible to proceed with the example exercise proposed through the hypothetical 

configuration [3.62] for which the missing “implicit flow” must be determined. Using the known 
data of that configuration, a graph of the relevant function f(Too) (i.e., of the left hand side of the 
equation [3.75]) can easily be obtained by the aid of Excel software. It is initially convenient to 
build the graph using relatively large value intervals for Too with a view to identifying a suitable 
narrow interval of the independent variable within which the graph intersects the abscises. 
Subsequently, using much smaller value intervals for  Too , and according to the desired degree of 
approximation, the value Too that zeros the function can easily be seized. 

In the graphs that follow, the value intervals are initially fixed in 50 flow units; subsequently, in 
the second and third approximations, the intervals are 0.25 and 0.01 flow units, respectively. See 
Figures 3.1 and 3.2. 

 
 
                                                              Figure 3.1 
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Figure 3.2 
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DETERMINATION OF THE "IMPLICIT FLOW"AT A MORE DETAILED SCALE

                  
   f(Too) = 0. 000.000  at  Too= 323.1589 

 
 
 Thus, it may be stated that f(Too = 323.1589) = 0..000.000.3537 means in practice that            

Too= 323.1589 is the searched implicit flow relative to the system’s configuration [3.62].26  
One can soon observe that the implicit flow determined by this example exercise is noticeably 

larger than any other interaction flow of the system. As far as my experience in the field of socio-
economic systems is concerned, that is the norm: The “implicit flow” determined in every 
application of the theory was found remarkably larger than any other interaction surveyed in the 
operations leading to the definition of the system. It is also a fact that responds to intuitive 
expectations and may justify my insistence in drawing attention to the importance of the “rest of the 
universe” (i.e., of the system’s external component) in representing any system to analyze. It is so 
understandable that the implicit flow plays a major role in the description of the system’s evolution, 
as in most cases it is the principal contributor to the determination of the system’s syntropy. 

                                                            
26 It is worth noting that Excel software can always and easily be used for the quick determination of the 
“implicit flow”, whatever the system’s size, upon the very few data that are in every case necessary and 
certainly available for the definition of f(Too).  
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4. The system’s evolution equations and parameters  
 

4.1 The standing configuration of the hypothesized system  

The determination of the “implicit flow” closes the system’s configu-ration according to the set 
of interaction flows detected by the direct survey. Only after closing the system’s configuration it is 
possible to proceed with the application of the theory. 

Referring to the exercise example concerning the hypothesized four-component system 
introduced in the previous chapter (see [3.62]), the relevant closed standing configuration is now as 
follows:   

Figure 4.1       
  THE SYSTEM'S INTERACTION FLOW  ONFIGURATION   
                    {Tjk}     

Component labels 0 1 2 3 ORIGINS   
0.. 323.1587 15 12 16 366.1587  Oo 
1.. 18 21 22 18 79  O1 
2.. 7 4 16 9 36  O2 
3.. 9 10 13 19 51  O3 

          
DESTINATIONS  357.1587 50 63 62 532.1587   

 Do D1 D2 D3 T   
              

 

in which Too= 323.1587 is the calculated implicit flow. By use of the definition [2.12], this flow 
configuration is translated into the relative standing flow probability configuration as follows: 

Figure 4.2 

   {Pjk}     
Component labels 0 1 2 3 Origin probability   

0.. 0.607260 0.028187 0.022550 0.030066 0.688063 Po
1.. 0.033824 0.039462 0.041341 0.033824 0.148452 P1
2.. 0.013154 0.007517 0.030066 0.016912 0.067649 P2
3.. 0.016912 0.018791 0.024429 0.035704 0.095836 P3

           
Destination probability 0.671151 0.093957 0.118386 0.116507 1.000000   

  Qo Q1 Q2 Q3 SUM   
              

 

Both configurations form the quantified image of the system as described in one of its supposed 
standing states; in particular, as it is described in that state of unstable temporary equilibrium which 
the observer/analyst considers as the system’s original state. 
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It is also useful and interesting to evidence the relevant base system both in terms of flows and in 
terms of flow probability, as shown by the following Figures 4.3 and 4.4:  

Figure 4.3       
       THE SYSTEM'S BASE CONFIGURATION   
                        (The base flow  matrix)    
                    {Tjk

*.}     
Component labels 0 1 2 3 ORIGINS   

0.. 245.7479 3.,4032 43.3480 42.6599 366.1589 Oo 
1.. 53.0209 7.4226 9.3525 9.2040 79 O1 
2.. 24.1614 3.3824 4.2619 4.1942 36 O2 
3.. 34.2287 4.7918 6.0377 5.9418 51 O3 

         
 DESTINATIONS 357.1589 50.0000 63.0000 62.0000 532.1589   

 Do D1 D2 D3 T   
              
   

Figure 4.4             
   THE SYSTEM'S BASE CONFIGURATION    
            (The base flow probability matrix)    
           {Pjk

*.}       Origin 
probability 

  
Component labels 0 1 2 3   

0.. 0.461794 0.064648 0.081457 0.080164 0.688063 Po
* 

1.. 0.099634 0.013948 0.017575 0.017296 0.148452 P1
* 

2.. 0.045403 0.006356 0.008009 0.007882 0.067649 P2
* 

3.. 0.06432 0.00900 0.01135 0.011166 0.095836 P3
* 

Destination 
 probability 

       
0.671151 0.093957 0.118386 0.116507 1.000000   

  Qo
* Q1

* Q2
* Q3

* SUM   
              
 

It is now possible to determine all the system’s relative state parameters: 
 
[4.1]         Entropy potential   H4 = 2lnN = ln16 = 2.7725887  
 

[4.2]         Entropy = E = 
,

lnjk jk
j k

P P−∑ = 
,

1ln lnjk jk
j k

T T T
T

 −  
 

∑ = 1.7041659 

 
[4.3]         Syntropy = S = H – E = 1.0684229 
 
[4.4]         Base entropy = E*=  ln(hN2)= * *

,
lnjk jk

j k
P P−∑  = 1.940283                          

 
[4.5]         Base syntropy (or stability) = S* = H – E*= 0.8323057 
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[4.6]        State factor (or state instability) = h = e–S* = mT = 0.4350452 
 
[4.7]        State strength = F = 1–.E/.E*= 0.121692;  
 

Particularly important is now the possibility of determining the complete set of the intents that 
characterize the structure of the system. Remembering equation [3.30] together with the definition 

given in [3.29] for “flow ratio”, the system’s matrix of intents ln jk
jk

R
h

µ
   =  
   

 is as follows: 

 
Figure 4.5 

THE SYSTEM'S STRUCTURE: THE INTENTS 
  

   {µjk }   h = 
Component labels 0 1 2 3 0.4350452 

0.. 1.1061439 0.0022077 -0.4520480 -0.1483652  
1.. 0.7803529 1.8722995 1.6877078 1.5030374  
2.. 0.6659493 1 2.1551829 1.5958191  
3.. 0.6043910 1.5679843 1.5992369 1.9947268  

            
      

From which also the respective relation matrix {εjk.=.e.µjk.=. jkR
h

}: 

Figure 4.6 

             THE SYSTEM’S STRUCTURE: THE RELATION 
COEFFICIENTS   

  {εjk} h = 
Component labels 0 1 2 3 0.4350452 

0.. 3.0226800 1.0022101 0.6363239 0.8621162   
1.. 2.1822423 6.5032332 5.4070722 4.4953225   
2.. 1.9463374 2.7182818 8.6294688 4.9323677   
3.. 1.8301373 4.7969694 4.9492541 7.3501950   

            
 
 
The intents µ02  and  µ03 in Figure 4.5 offer the opportunity for a short comment on the meaning 

that the theory attaches to negative values expressed by such parameters. As seen, any “intent” is 
the product of a “mean efficacy” ujk  and Lagrangian constant λ, the latter being always a positive 
number. Therefore, any negative “intent” entails that the efficacy involved is necessarily negative 
too. The meaning of negative efficacy depends on the nature of the system considered: For example, 
if it is any kind of socio-economic system, negative efficacy may mean either loss or aid or 
investment. In other cases, instead, negative efficacy may simply indicate the mean “weight” of an 
interaction result that opposes the activators’ expectations. 
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Concerning the determination of Lagrangian constant λ, the problem is negligible and its 

solution is generally unnecessary, as already remarked. However, the solution would in any case be 
immediate, once fixed the criterion for quantifying the elements of the efficacy matrix {ujk}. For 
instance, if the interaction mean efficacy in our example system (after setting µ21.=.λu21.=.1) is 
evaluated in Euros, then saying u21.=.267.43.€ implies that λ.=.1/267.43.=.0.0037396 is the system’s 
Lagrangian constant.     

 
To complete the set of the same system’s standing state parameters, the values for the structure 

potentials {Xi.=.hQi} and {Yi.=.hPi} - remembering the definitions [3.39] - are the following ones: 
 

         {Xi}       {Yi} 
     
 Xo.=. 0.2919810 Yo.=. 0.2993385
[4.8]              X1.=. 0.0408755 Y1 =. 0.0645833
 X2.=. 0.0515031 Y2 =. 0.0294304
 X3,=. 0.0506856 Y3.=. 0.0416930
                                                                      Σ 

Sum   0.4350452  =   h   =     0.4350452 

         
One purpose of the phase parameters calculated and shown above is to exhibit also the numerical 

consistency of the theoretical definitions and equations presented in the previous chapters. As 
already pointed out, the quantified parameters defined so far regard the original state of the system, 
which the observer/analyst describes as that of a temporary equilibrium (i.e., of an original standing 
state), prior to describing and discussing the system’s possible evolution trends.  

 
 

 4.2 The system’s evolution 
 
The system described in the preceding chapters is identified through two aspects of its: The 

configuration and the structure, which have been kept distinct from each other, though closely 
interconnected by the equations expressed.   

The terminological choice hints, through the relevant semantic connotation, also at the salient 
features of the two different aspects: The configuration, which refers to the system’s visible and 
measurable aspect, i.e., to the system as it appears to the observer; and the system’s structure, 
which is guessed by the observer as a more stable underlying network of causes that motivate the 
rather unsteady configuration. 

It is why the theory attaches less “inertia” to the system’s configuration than to the system’s 
structure, inasmuch as the configuration shows irreversible transformations of the system earlier 
than the relevant changes in the system’s structure can be detected and assessed. 

The reason for such an assumption is that the generation of intentional interactions depends on 
the activators’ expectations associated with the effects of the actions undertaken. Interactions and 
evaluation of the relative effects is a process that takes time, this being more or less long according 
to the nature of the interactions considered. Moreover, the interaction effects are far from being all 
simultaneous, at variance with the detected interactions, which – as to each particular configuration 
– are instead surveyed or assessed with reference to the same unit of time. 
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The activators’ evaluation of the quality of their interaction effects may either confirm or 
disappoint the respective expectations; in both cases, the feed-back from the interaction destinations 
may prime either tentative or irreversible – but not necessarily immediate – adjustments or major 
modifications to subsequent interactions.  

In addressing evolving systems, the implicit obvious assumption is that the “phenomenon” 
observed and described is intrinsically unstable. More precisely, it is a process, which may or may 
not show states of apparent stability. Then, taken such an assumption for granted, the theory 
assumes also that the evolution process consists of sequences of tentative adjustments of the 
interactions to the impact of the system’s overall activity on the activators’ expectations. These 
expectations – in turn, albeit late with respect to the series of changes occurred in the interaction re-
distributions – are corrected according to the effects of the precedent activity, with a view to 
keeping the system alive. 

Considering the nature of the intents defined, it is supposed that the activators are constantly 
basing their activity on a perceived stability of the condition in which their expectations are to a 
various extent rooted, while stability seems instead escape the attempts to keep it permanently. 
Indeed, looking at the equations of the “intents” translated into functions of the system’s stability, 
one clearly observes (remember [3.29]) that 

 

[4.9]                                               
*jk S

jk jk jk

R
u R e

h
µ λ= = = ,                   ( , )j k∀ , 

 
i.e., the expected efficacy of the interactions grows exponentially with the perceived stability S* of 
the system. 

Nevertheless, as already remarked, unexpected effects resulting from some of the interactions 
may cause relatively stable corrections to the interaction distribution and to the system’s base, on 
which the stability rests.  

The equations that describe the system’s evolution move from this observation: Possible steady 
changes in some interactions may modify the system’s base, particularly concerning the probability 
distribution of the interaction origins and destinations, with the subsequent modification of the 
entire configuration of the system. Such a modification is not a banal event, for it is necessarily 
connected with the whole activity of the system according to its internal links and constraints, as 
described by the theory’s equations. Actually, any minimal alteration in the distribution of the base 
probabilities reflects on the whole system. 

 
 

4.3 The evolution process: A simulative representation 
 
The theoretical approach to the representation and simulation of the evolution process is based 

on the following six description criteria: 
 

(i)  Any apparent equilibrium state (standing state) of the system is the result of a precedent process 
of transformation that has involved both the interactions between the system’s components and the 
intents of the activators. 

 
(ii) Any standing state achieved by the system is subject to relatively slight oscillations about an 
average configuration, which the observer/analyst represents as the original image of the system. 

 
(iii) Any new transformation process is primed by any irreversible change in the base of the 
standing system; the change entails a redistribution sequence of the interaction flows. Such a 
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redistribution sequence is referred to as the “sequence of transition phases of the transformation 
cycle”, each transition phase being marked by specific phase parameters, partially different from 
the phase parameters that pertain to the standing states of the system.  

 
(iv) The sequence of transition phases develops with no change in the set of the activators’ intents 
(which constitute the system’s structure) until the persistence of the activators’ expectations does 
not jeopardize the system’s survival. In other terms, to avoid the system’s collapse, the need appears 
for a new settling down of the system, which implies, together with a new configuration of the 
system, also the transformation of the relevant set of intents, i.e., a change also in the system’s 
structure.  

 
(v) Every change in the system’s structure concludes a transformation cycle and establishes a new 
standing equilibrium state, from which – sooner or later – a further transformation cycle will 
necessarily start. The only possible alternative to further transformation cycles is a transition 
process that inevitably leads to the disbandment of the system. 

 
(vi) Important: The duration of any evolution process that includes more than one transformation 
cannot objectively be correlated with the astronomic conventional time. Instead, the duration of 
each transition phase may be correlated with the time unit used to quantify the interaction flows (see 
Paragraph 4.5 ahead).  As to the theoretical stance, any evolution process is a particular aging 
process, proper to each particular system considered and described by specific phase parameters. 

 
 

4.3.1 Actual transition phases 
 
Bearing the foregoing notes in mind, remember the definitions 
 
                                jk j

k
T O=∑     as well as     jk j

k
P P=∑ ,         ( )j∀  

 
referring to which and remembering also [3.47] and [3.44], after taking for known the supposed or 
observed modifications to the origin semi-base {Oj

(1)}, it is possible to write  
 

[4.10]                                          (2) (1)
jj k jk

k
Y D Oε =∑ ,                       ( )j∀    

whence also 

[4.10a]                                         

(1)
(2) j

k jk
k j

O
D

Y
ε =∑   ,                       ( )j∀    

together with 
[4.11]                                        

(2) (1)
k jj jk

k
Y Q Pε =∑   ,                     ( )j∀  

and 

[4.11a]                                        
(1)

(2) j

k jk
k j

P
Q

Y
ε =∑    ,                        ( )j∀ .    

 
In these “transition equations” the superscript “ (1) “ indicates that the figures are the known 

quantities of the starting phase (phase 1) of the simulation, whereas the superscript “ (2) “ indicates 
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the quantities to be initially determined as unknowns. (The figures with no superscript are also 
known, for they pertain to the original standing state). 

If the known figures used to start the simulation characterize one of the system’s semi-bases, that 
particular modified semi-base may be referred to as the “transition vector”. 

 The calculated solutions {Dj
(2)} will subsequently go to form the known terms of the transition 

equations of phase 2. The unknowns of phase 2 belong to the subsequent origin semi-base {Oj
(3)}, 

which, once determined, is in its turn used to form the set of the known terms of the subsequent 
transition equations in which {Dj

(4)} are the unknowns to be determined. The determined {Dj
(4)} are 

then used for the set of the known terms of the equations in the unknowns {Oj
(5)} of the sub-sequent 

transition phase; and so forth. 
Quite analogous sequences regard the {Pj

(i)} and {Qj
(i+1)} of the equations [4.11] and [4.11a]. 

Obviously, the simulation of the transformation cycle may in an alternative start with known 
values given for the semi-base {Dk

(1)} (or {Qk
(1)}), and with the initial simultaneous flow equations 

 

[4.12]                                           
(1)

(2) k
j jk

j k

DO
X

ε =∑   ,                          ( )k∀  

 
or else with the simultaneous probability equations 

 

[4.13]                                            
(1)

(2) k
j jk

j k

QP
X

ε =∑   ,                           ( )k∀  

 
and so on, in a “symmetrical” analogy with the equations [4.10] to [4.11a]. 

The relation coefficients {εjk} remain unchanged by hypothesis up to the phase that concludes 
the transformation cycle, as these coefficients represent the system’s original structure. 
Accordingly, along with the system’s structure, also the structure potentials {Yj} and {Xk} change 
only at the conclusion of each transformation cycle, as these “potentials” are steadily determined by 
the relation coefficients {εjk} through the equations [3.37a] and [3.37b].  

In this connection, it is once again worth pointing out that the equations [3.39], which – in any 
standing configuration of the system – connect the structure potentials with {Pj} and {Qk} as well 
as with {Oj} and {Dk} through the relative state factor h, cannot pertain to transition phases, for 
during the transition process the system’s configuration does change from phase to phase and the 
state factor h depends on a stability (remember h = e–.S* ) that is missing by the definition itself of 
“transition phase”. (Actually, with reference to the equations [3.39] that define the “structure 
potentials”, one may also suppose that in any transition phase x the products Yj.= h(x)Pj

(x) and 
Xk.=.h(x)Qk

(x) remain constant, interpreting h(x) as the latent state factor of a possible standing state 
of the system if this could establish with the configuration provided by the transition phase x).  

The sequence of transition phases cannot be very long; indeed, it is mostly short, since there is 
no mathematical theorem – as algebra teaches – that can secure all positive solutions to systems of 
simultaneous linear equations like the [4.10] to [4.12a].27 That is why, after a few transition phases, 
also negative solutions appear that verify the simultaneous transition equations of a generic phase z.  

Therefore, considering that both negative interaction flows and negative interaction probabilities 
are physically meaningless (at least in the context of this theory), the simulated sequence shall be 

                                                            
27  One particular aspect of the simultaneous transition equations is that all the elements of the coefficient 
matrix {εjk} and relevant transposed t{εjk} are positive quantities, albeit this fact is neither necessary nor 
sufficient condition to secure all positive solutions to the regarded equation systems. 
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stopped: Negative solutions to the simultaneous equations introduced above shall conventionally be 
considered as the indicators of the disbandment phase of the system. Phase z is interpreted as the 
deadly stage in which the system collapses. Such a conclusion shall not be allowed for, if the 
simulation operator assumes that the system survives. 

 
The theoretical remedy to the system’s disbandment (or collapse) is the simulated conversion of 

any transition phase that precedes the disbandment phase z into a transformation phase, in which 
the origin and destination semi-bases of two subsequent transition phases [for instance, phase z-1 
and phase z-2] are taken to form the base of a new standing state of the system, together with the 
relevant new structure and configuration. In most cases, the transition phase z-1 is that which shows 
the best overall conditions for the system’s transformation and survival.   

 
 

4.3.2 Back to the simulation exercise 
 
Let’s go back to the example system of Figures 4.3 and 4.4.  
Just to help understand the exercise, imagine that it represents the activity of an economic system 

in a given (original) year of activity, of which Component 2 represents the Industrial Sector. At the 
end of that year, a few activators of Component 2 realize that the response from the market makes it 
seem convenient to decide a slight increment in the output of their activities, so that the sales 
programmed for the following year bring the overall “homogenized” output of Component 2 to 
36.09 units (+0.25%) instead of the 36 units of the previous year. (Something analogous may 
obviously regard all the system’s components; however, for simplifying this initial exercise, let the 
example focus only on the consequences of the decisions made by some activators of Component 
2). Handling the figures of the example system, the first transition phase equations (refer to [4.10a] 
and [4.11a]) for the destination flows are: 

 
                                                                                                                        Oj

(1)/Yj 

 
              3.022680.Do

(2)+1.002210.D1
(2)+0.632324.D2

(2)+0.862116.D3
(2)= 1223.2262 

[4.14]          2.182242.Do
(2)+6.503233.D1

(2)+5.407072.D2
(2)+4.495323.D3

(2)= 1223.2264 
              1.946337.Do

(2)+2.718282.D1
(2)+8.629469.D2

(2)+4.932368.D3
(2)= 1226.2830 

              1.830137.Do
(2)+4.796969.D1

(2)+4.949254.D2
(2)+7.350195.D3

(2)= 1223.2269. 
 
T1= 532.1587+0.09.=.532.2487 being the new hypothesized total interaction flow, the relative 

equations for the destination probabilities are: 
 
                                                                                                                       Pj

(1)/Yj 
                                                                                                                                           
              3.022680.Qo

(2)+1.002210.Q1
(2)+0.632324.Q2

(2)+0.862116.Q3
(2)= 2.2982243 

[4.14a]        2.182242.Qo
(2)+6.503233.Q1

(2)+5.407072.Q2
(2)+4.495323.Q3

(2)= 2.2982257 
              1.946337.Qo

(2)+2.718282.Q1
(2)+8.629469.Q2

(2)+4.932368.Q3
(2)= 2.2691061 

              1.830137.Qo
(2)+4.796969.Q1

(2)+4.949254.Q2
(2)+7.350195.Q3

(2)= 2.2982275 
 
It can be observed that the known terms of these equations are not exactly equal to each other (as 

it should be - according to the equations [3.37] - if the system were instead in its original standing 
state), because the original equilibrium has been broken by the alteration made to O1

(1). 
Considering that the alteration consists in 0.000169 of the system’s overall activity, also the 

differences between most of the same known terms are only visible around their sixth significant 
digit. 
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The solutions {Dk
(2)} and {Qk

(2)} to the equation systems [4.14] and [4.14a], respectively, go to 
compose the known terms of the subsequent equation systems in the unknowns {Oj

(3)} and {Pj
(3)}, 

respectively, of transition phase 3; and so on, as per the precedent description given for the 
transition process. To note: the relation coefficient matrix of every odd phase equations is the 
transposed matrix of the preceding even phase equation system. 

Due to the impossibility of using any “state factor” during the transition process, the 
configurations of the transition phases are determined by use of the “semi-canonical” equations 
introduced in Paragraph 3.3.2, namely by use of the equations [3.44] and [3.45] as follows: 

 

[4.15]                                         ( 1) ( 1)i i
jk k j jkP Q Y ε+ += ,                        ( , , )i j k∀  

and  
[4.15a]                                       ( 2) ( 2)i i

jk j k jkP P X ε+ +=  ,                     ( , , )i j k∀  
 

[4.14b]                                       ( 3) ( 3)i i
jk j k jkP Y Q ε+ +=  ,                      ( , , )i j k∀  

and so forth. 
  Consider also the equations ( ) ( )i i

jk jkT P T= ,  ( , , )i j k∀ , if the total flow T1 is supposed to remain 
constant during the transition process.   

After carrying out the required calculations, one observes that there are negative solutions to the 
simultaneous equations relevant to the transition phase 5. Therefore, z.=.5; and the simulation shall 
be stopped at the phase z-1.=.4. In this context, any “phase z-1” will be referred to as the “agony 
phase” of the transition process.  

The interaction flow configuration of the phase 4 is as follows: 
 
                                                    {Tjk

(4)} 

Component labels 0 1 2 3 ORIGINS  
0. 326.26 10.11 16.16 13.7 366.23 Oo 
1. 18.17 14.16 29.63 15.41 77.37 O1 

[4.16]   2. 7.07 2.7 21.55 7.71 39.03 O2 
3. 9.09 6.74 17.51 16.27 49.61 O3 

 DESTINATIONS 360.59 33.71 84.85 53.09 532.24  
Do D1 D2 D3 T  

 
and the respective interaction probability configuration is given by 
 
                                                             {Pjk

(4)} 

Component labels 0 1 2 3   
0.. 0.612994 0.018995 0.030362 0.025740 0.688092 Po

(3) 

1.. 0.034139 0.026605 0.055670 0.028953 0.145367 P1
(3) 

[4.16a]               2.. 0.013283 0.005073 0.040489 0.014486 0.073332 P2
(3) 

3.. 0.017079 0.012663 0.032899 0.030569 0.093210 P3
(3) 

 0.677495 0.063336 0.159421 0.099748 1.000000  
 Qo

(4) Q1
(4) Q2

(4) Q3
(4) Sum  
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Actually, the phase 4 in this example of transition process is also the most convenient phase for 
the transformation of the system, since the transformation would bring a remarkable improvement 
in the system’s organization, as shortly discussed in the next Paragraph 4.3.3.  

The configuration of the transition phase 4, once transformed into that of a new standing state, 
shows a relatively high increase in the system’s syntropy with a corresponding collapse of entropy, 
plus a set of parameters (some of them not yet introduced; see subsequent Paragraph 4.5) apt to 
synthesize and represent the set of the opportunities that (presumably) induce the systems’ 
activators to modify their expectations.  

 
The transformation from a transition phase into the corresponding latent standing state requires 

the transformation of the system’s structure. Therefore, a new standing state for the system – seized 
the favourable opportunity represented in the example by the configuration [4.16]  – is possible only 
if the hypothesized changes in the activators’ expectations make the system’s original relation 
coefficients {εjk}  become { 1

jkε }; so as to write (remembering the “canonical” and “semi-canonical” 
equations [3.42] and [4.15] ), the following equations for the new standing state configuration: 

 

[4.17]                                   
1 1

1 1 (4) (4)

1

j k
jk jk jk k j jk

Y X
P P Q Y

h
ε ε= ≡ =   ,             ( , )j k∀  

 
in which the index or the superscript “1” marks the quantities pertaining to the new standing state, 
as achieved at the conclusion of the first transformation cycle, while the new state factor h1 is 
determined accordingly. The transformed relation matrix { 1

jkε } is obtained through the conditions 

imposed by the new standing state configuration 1{ }jkP , i.e., by the following conditions 
 

[4.18]                                 1 1 1 1 (3) (4)
jk k jk jk k j jkP Q Y P Q Yε ε= ≡ = ,                ( , )j k∀  

from which also 

[4.19]                                      
(4)

1
1 1 1

k j j
jk jk jk

k j j

Q Y Y
Q Y Y

ε ε ε= =  ,                       ( , )j k∀  

 
as it is { (4) 1

k kQ Q≡ } because of the conversion of the semi-base { (4)
kQ } into the relevant semi-base 

{ 1
kQ } of the new standing state. 
In fact, the configuration of the new standing state at the conclusion of the first transformation 

cycle coincides with the [4.16] of the agony phase 4. Then, the procedure for the transformation 
makes use of the semi-bases {Oj

(3)} and {Dk
(4)}, or – equivalently – {Pj

(3)} and {Qk
(4)}, to calculate 

the stability S1
* inherent in the new standing configuration, whose base is formed by the semi-bases 

of the transition phase 4, thus obtaining also the state factor  h1.=
*
1Se− of the new standing state. In 

this case, the calculation of   S1
*  gives: 

 

[4.20]                    * (3) (3) (4) (4)
1 2 ln 4 ln lni i i iS P P Q Q 
= − + 

 
∑ ∑ = 0.8610345  . 

Therefore, 

[4.21]                              
*
1 0.8610345

1 0.4227245Sh e e− −= = = . 
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Then, it is also possible to determine the structure potentials pertaining to this standing state by 
use of the equations [3.39], thus obtaining the transformed structure potential matrices 
{Xi

1
.=.h1Qi

(4)} and {Yi
1

.=.h1Pi
(3)}, i.e., explicitly:                   

                                      

 {Xi
1} {Yi

1}
0. 0.2863938 0. .0.2908733 
1. 0.0267737 1. .0.0614501 

[4.22] 2. 0.0673910 2. .0.0309990 
3. 0.0421660 3. .0.0394021 

                                                  Σ 

                           0.4227245   =   h1  =     0.4227245   

 

Allowing for the foregoing considerations, the new relation matrix pertaining to the newly 
achieved standing state is calculated through the equations [4.19] as follows: 

 
 

THE RELATION MATRIX  { 1
jkε } OF THE NEW STANDIG STATE 

Component labels 0 1 2 3 
0. 3.1106483 0.2225231 0.0643828 0.1235734 

[4.23]                  1. 10.630239 6.8348168 2.5896145 3.0500116 
2. 18.7945625 5.6632545 8.1927757 6.6339184 
3. 13.9035946 7.8626305 3.6967160 7.7775510 

 
with the respective intent matrix: 
 
 

THE INTENT MATRIX  { 1 1lnjk jkµ ε= } OF THE NEW STANDING STATE 

Component labels 0 1 2 3 
0. 1.1348312 -1.5027246 -2.7429087 -2.0909196 

[4.24]                  1. 2.3637027 1.9220297 0.9515090 1.1151454 
2. 2.9335676 1.7339987 2.1032528 1.8921956 
3. 2.6321474 2.0621212 1.3074449 2.0512415 

 
 
The configuration of the new standing state at the conclusion of the first transformation cycle – 

in terms of both flow and interaction probability re-distribution – is obviously that shown by [4.16] 
and [4.16a], respectively, as provided by the agony phase 4.  

It is worth stressing again that the determination of a new structure for the system at the 
completion of every transition/transformation cycle is necessary both to keep the system in 
existence and to allow it to start further possible transformation cycles, since, through the previous 
structure, the system would have not survived beyond the agony phase of its transition process: The 
subsequent transition phase z would have been that of the system’s disbandment.  
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4.3.3 A few further comments on the example exercise 
 
The schematic simulation example conducted above is mainly aimed at proving the high 

sensitivity of the represented complex system, also when very minor irreversible changes intervene 
in its configuration. The only alteration made to the behaviour of Component 2, whose activity is 
initially incremented with just a quarter of percent point, leads to significant changes in the system’s 
interaction distribution at the completion of the first transformation cycle, as shown by the 
differences between the new standing state configuration and the original one. In particular, the 
same Component 2 shows a remarkable increment in its own activity at the expenses of the other 
components.  

In the example exercise, the choice of the agony phase for the system’s transformation is 
associated with the noticeable increment in both the system’s syntropy (which the theory interprets 
as degree of overall effectiveness) and stability, which alone, in case of actual sensitivity analysis, 
might be a justifiable planning choice for the decision makers.  

Indeed, assuming the configuration [4.16] as the transformation phase, i.e., as the phase of the 
transition process that makes its configuration become the configuration of a new standing state, 
one observes, for example, that the system’s syntropy raises from the original S.=.1.068423 to S1 = 
1.102704 in the new standing state, (+3.2%); entropy E.=.1.7041659 falls to E1=1.669885, while 
the system’s stability also improves remarkably from S*= 0.832306 to S1

*=.0.861034,  (+3.44%).  
Not to omit the consolidation of the system’s activity represented by the associated phase 

strength F1= 1–.E1./E1
*= 0.1264238, with its 3.89% increment (refer to [4.7]). 

 
The increase in the number and in the absolute values of the negative intents relevant to the 

transaction between the external component and the other components of the system might in this 
case be interpreted as an increment in the aids and/or investments made by foreign activators in the 
production sectors of the main system. Due to the overall improvement showed by the system’s 
newly achieved state, it would seem less credible that the same negative figures have to be 
interpreted as increased losses associated with the relevant transactions. This comment, however, is 
just a further example of how the simulation operator could be led to interpret (possibly but not 
necessarily) the results of the represented evolution. 

A few additional phase parameters, which will later be proposed, would help planners to make 
more appropriate interpretations and decisions, according to the specific issues inherent in the study 
subject.  

 
It should go without saying that, in simulating possible evolutions of the system, one may in 

various ways imagine (or detect) changes in the system’s base; which means the possibility of 
intervening in the simulated “behaviour” of more than one component, either concerning the origin 
semi-base (along with the origin probability semi-base) or the destination semi-base (along with the 
destination probability semi-base), or even concerning both semi-bases. In the latter case, the known 
alterations (to be introduced only in starting the simulation) shall initially be transferred to the 
known term side of the simultaneous transition equations regarded, obviously letting the same semi-
bases change automatically during the transition phases sub-sequent to the first one, according to 
the calculation process. 

For example, if in the previous simulation exercise one also assumes that the quantity D1
(2) is 

known (along with the corresponding probability Q1
(2), obviously), then, after elimination of one 

unnecessary equation (say the second one), the system [4.14] would become 
 
              3.022680.Do

(2) +0.632324.D2
(2)+0.862116.D3

(2)= 1223.2262–1.002210.D1
(2) 

[4.14’]        1.946337.Do
(2) +8.629469.D2

(2)+4.932368.D3
(2)= 1226.2830–2.718282.D1

(2) 
              1.830137.Do

(2)+4.949254.D2
(2)+7.350195.D3

(2)= 1223.2269–4.796969.D1
(2)  . 
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Analogous change shall clearly be made in the probability equations [4.14a].  
 
However, there is to expect that the transition cycle could rapidly shorten when initial alterations 

to both semi-bases occur at once: It is the consequence of exceeding constraints to the system’s 
change. It might happen that even the first transition phase be affected by “negative solutions”, 
which means that the tried modification to the system’s base is impossible. 

The system’s high sensitivity, due to the close interdependency that binds the system’s activities 
to each other, does in general suggest – as also experience teaches – to operate evolution 
simulations through a longer series of transformation cycles, each started by relatively small 
changes made in the system’s base in each of the subsequent standing states achieved.28 

 
In carrying on evolution simulations, one should always allow for the observed evolution pace 

proper to the system considered. In this connection, the time unit adopted to quantify the interaction 
flows is the reference parameter for an appropriate sizing of the amount of each “artificial” 
modification made in the system’s base for simulation purposes.  

Whatever the measurement system adopted, if – for example – 100 out of 10000 total 
interactions is on an average the number of interaction units involved during one time unit of the 
system’s evolution process observed, a simulated change in the system’s base exceeding 100 
interaction units per time unit might subject the system’s “physiology” to an unbearable stress, as 
resulting in immediate negative solutions provided by the very first transition equations.    

 
 

4.3.4 Virtual transition phases 
 
The transition phases addressed so far are denoted “actual phases”, to mean that they represent 

probable future evolution stages occurring in consequence of given irreversible changes in the 
system’s base. In simpler terms, the “given” changes are supposed to be the cause of the simulated 
future evolution process. As already remarked, further transformation cycles can develop in 
consequence of further changes occurring in the base of every new standing state of the system. In 
principle, the series of subsequent transformation cycles cannot be limited, and the simulation of the 
evolution process may develop indefinitely. 

In this theoretical context, it is necessary to pre-suppose also an evolution link between the 
original configuration of the system and the first actual transition phase, inasmuch as this 
simulated first transition – determined through given changes – must logically be thought of as 
belonging to a transition process already in progress, which did start from the original standing 
state because of previous unknown changes in the original configuration.  

The supposed transition phases that precede the first actual simulated transition phase are 
referred to as “the virtual phases” of the simulated process; such phases simulate the past of the 
first actual transition phase, as the latter is supposed to be the “logical” consequence of its own 
past. 

The point to grasp is that it is actually impossible to seize, recognize, isolate the “objective” 
original causes that lead one to observe (or imagine) and “give” the precisely quantified and 
irreversible changes necessary to determine the first actual transition phase of every sub-sequent 
transformation cycle.  

A major limit of this theory is that it can neither formulate nor know any “spontaneous decision” 
made by the simulated system itself as to its own “choice” regarding its evolution path towards 
either survival or disbandment. “Choices” of the kind can possibly be simulated only through 
                                                            
28  No need to say that simulations of this kind, which usually involve a huge amount of numerical 
calculation, can only be performed by means of appropriate computerized procedures. 
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relatively arbitrary constraints – either through additional hypotheses or recorded observations – 
imposed by the simulation operator to the features of his representation. 

The foregoing considerations entail that the simulated transition process shall be imagined as 
already in progress, irrespective of the phase that the simulation operator has conventionally 
established to be the “initial” one.  

That is why another particular transition phase, which may be dubbed “phase 0.”, can also be 
thought of, whose configuration (dealing for the moment only with the interaction probabilities) 
shares one of its two semi-bases with the configuration of the initial phase, the probability elements 
of which are expressed by the following N.2 semi-canonical equations:  

 
[4.25]                                                (1) (1)

jk j k jkP P X ε=                             ( , )j k∀   
  
As seen, this configuration cannot coincide with the original one, because - should this kind of 

semi-canonical equations regard the original standing state - the respective known terms would 
include the original matrix {Pj}, instead of {Pj

(1)}, the latter being – in the exemplification exercise 
- the modified semi-base (i.e., the transition vector) of the first actual transition phase or phase 1.  

It is therefore necessary to pay attention to the use of the superscripts that identify the phases of 
the simulation: The summations of the equations [4.25] with respect to the index “k” provide the 
elements of the transition vector {Pj

(1)}, whereas the summations of the same equations with 
respect to the index “j“ provide the elements of the other semi-base {Qk

(0)} that belongs both to the 
initial phase and – symmetrically – to the  first virtual phase 0, according to the following 
equations: 

 

[4.26]                                     (1) (1) (1)
jk j k jk j

k k

P P X Pε= =∑ ∑                 ( )j∀ 3 

and 
[4.27]                                      (1) (1) (0)

jk k j jk k
j j

P X P Qε= =∑ ∑               ( )j∀ 29. 

 
To be more precise, this particular semi-base { (0)

kQ } is the virtual side (to be calculated because 
unknown) of the first actual phase of the simulation, for the other given {Pj

(1)} semi-base of the 
same phase is the actual transition vector that starts the sequence of the actual phases. 

The features that distinguish the initial phase, i.e., the “start phase” or phase 1, from the phase 
dubbed “phase zero”, are obviously a matter of conventional definitions only; what really matters is 
to make the definitions unambiguous and clearly usable for practical purposes.30 

 Indeed, the probability matrix {Pjk
(1)}, whose elements are given by the equations [4.25], 

belongs entirely to the actual phase 1 of the simulation, though the destination probability semi-
base {Qk

(0)} of the same phase 1 configuration belongs to the phase 0.  
As a conclusion, one virtual semi-base characterizes the configuration of the first actual 

transition phase, always.  
The elements that configure the virtual phase 0 are expressed by the following N.2 semi-

canonical equations: 
 

                                                            
29 Remember [3.37b] and [4.13]. 
30 Because of possible confusion, not only is it important to bear in mind the distinction between the initial 
phase (that is the phase 1 or the first actual phase) and the phase 0, but also the fundamental distinction 
between both such phases and the original standing state. 
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[4.28]                                               (0) (0)

jk j k jkP Y Q ε=                            ( , )j k∀                     
 
whose factors {Qk

(0)} are previously calculated by the equations [4.27]. 
Thanks to the configuration { (0)

jkP } determined through the equations [4.28], it is now possible – 
by an analogy with [4.27] – to determine also the other semi-base of the virtual phase 0, i.e.,      
{Pj

(-1)}, through the following semi-canonical equations (refer to [3.47]): 
 

[4.29]                                      (0) (0) ( 1)
jk j k jk j

k j
P Y Q Pε −= =∑ ∑               ( )j∀ , 

 
which will then allow one to write also 
 

[4.30]                                   
(0) ( 1) ( 2)
jk k j jk k

j j
P X P Qε− −= =∑ ∑             ( )k∀   

 
as well as 
 
[4.31]                                              ( 1) ( 2)

jk j k jkP Y Q ε− −=                         ( , )j k∀ , 
 
and so on.                   

 
Thus, as it is now easy to guess, a “reverse” sequence of virtual transition equations has been 

initiated. This sequence represents a sort of mathematical “travel” through the probable past 
transition phases that have “spontaneously” sprung from the original standing state, virtually 
leading the system to the changes - either hypothesized or observed - which start the sub-sequent 
actual evolution sequence. 

 
The virtual configurations, whose sequence is generated by the reverse chain of the virtual 

transition equations initiated by [4.26] to [4.31], tend asymptotically to coincide with the 
configuration of the original standing state. Such a kind of “reverse mathematical travel” through 
the virtual phases might sometimes (for example, when the given changes to any known previous 
original configuration are not hypothesized but observed) be useful to try a better understanding of 
where and how the very initial imperceptible and irreversible alterations to the original 
configuration took place.  

 
(Figure 4.7 in the next page is a graphic scheme that illustrates the development line of an 

evolution cycle, from the system’s original standing state up to the actual agony phase that 
transforms into a new standing equilibrium state). 
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Figure 4.7 

      

 Figure 4.8 

THE SYSTEM'S INTERACTION FLOW CONFIGURATIONS IN VARIOUS PHASES 

   Tjk      
Component labels 0 1 2 3 ORIGINS   

New standing phase flows 326.26 10.11 16.16 13.7 366.23  
Original flows “0”. 323.1589 15 12 16 366.1589 Oo 

Flows at virtual phase –9 323.21 15 12 16 366.21  
New standing phase flows 18.17 14.16 29.63 15.41 77.37  

Original flows “1”. 18 21 22 18 79 O1 
Flows at virtual phase –9. 18.00 21.00 22.00 18.00 79.00  
New standing phase flows 7,07 2,7 21.55 7.71 39.03  

Original flows  “2”. 7 4 16 9 36 O2 
Flows at virtual phase –9. 7.00 4.00 16.00 9.00 36.00  
New standing phase flows 9.09 6.74 17.51 16.27 49.61  

Original flows  “3”. 9 10 13 19 51 O3 
Flows at virtual phase –9. 9.00 10.00 13.00 19.00 51.00  

        
New standing destinations 360.59 33.71 84.85 53.09 532.24   

Original destinations 357.1587 50 63 62 532.1587   
Destinations in phase –9 357.22 50.01 63.01 62.01 532.25   

DESTINATIONS. Do D1 D2 D3 T   
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Figure 4.9 

 

 
Figure 4.9a 

      
 Original value Entropy  Original value Syntropy 

PHASE E Increments  S Increments 
 1.7041659 ∆E  1.0684229 ∆S 

-9  1.900•10-06   -1.822•10-06 
-8  1.010•10-05   -1.018•10-05 
-7  1.410•10-05   -1.418•10-05 
-6  2.110•10-05   -2.118•10-05 
-5 Virtual phases 3.110•10-05  Virtual phases -3.118•10-05 
-4  4.710•10-05   -4.718•10-05 
-3  6.910•10-05   -6.918•10-05 
-2  1.031•10-04   -1.032•10-04 
-1  1.471•10-04   -1.472•10-04 
0  2.171•10-04   -2.172•10-04 
1  3.821•10-04   -3.822•10-04 
2  -1.390•10-05   1.382•10-05 
3 Actual phases 2.384•10-03  Actual phases -2.384•10-03 
4  -3.428•10-02   3.428•10-02 
      

 
The table of Figure 4.8 displays a comparison between the interaction flows calculated for the 

configuration of the new standing state with the configuration of the original standing state and 
with the configuration calculated for the virtual phase –9. It can be noted that the latter – albeit far 
from being the last possible virtual configuration – shows that most figures are already coincident 



Syntropy 2013 (3): 50 -153 ISSN 1825-7968
 

126 

 

at the second decimal number with the interaction flows of the original configuration, to which all 
the figures of the virtual phases tend asymptotically.  

Figures 4.9 and 4.9b are graphic representations of the transformation cycle in terms of entropy 
and syntropy increments with respect to the values of entropy and syntropy inherent in the original 
standing state, while Figure 4.9a lists the sequence of the increments illustrated by the graphs. 
 
Figure 4.9b 

 
 
The sequence of virtual phases is mathematically unlimited. It can be stopped according to the 

decimal number approximation of the simulation figures that the simulation operator considers as 
substantially coincident with the figures of the original standing state. 

Note: At variance with the actual transition phase equations, all the equations concerning the 
virtual phases of the simulation, like the equations [4.25], [4.26]….[4.31] etc., are not simultaneous 
equations; moreover, all of them imply positive solutions, necessarily, for each unknown term of 
the sequence is individually determined through either the product or the sum of known terms, all of 
which are positive quantities. This may also be viewed as a way to represent the certain past of any 
evolution process versus the simulation of the uncertain phases of its future development. 

(The presentation of the transformation cycle by use of the interaction probability configurations 
is substantially identical to a presentation made by use of the interaction flow configurations, which 
– for the sake of concision – I do not deem necessary to explicit). 

 
 

4.4 Some logical implications of the simulated evolution 
 
As seen, from the original standing state up to the actual phase of the simulation cycle that 

requires the transformation, the structure of the system remains the same as that of the original 
configuration. Therefore, it is licit to say that: 

 
(1) The structure of any original configuration is also the structure of every simulated 
transformation cycle that may start from the same original configuration. Considering the equations 
of the kind [4.15] and [4.15a] as pertaining to transformation cycles, the relevant structure may also 
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be expressed by the set of the two square matrices of coefficients {Ajk} and {Bjk} defined as 
follows: 
 
[4.32]                                                   Ajk = Yj.εjk  ,                             ( , )j k∀  
         
[4.33]                                                   Bjk = Xk.εjk ,                             ( , )j k∀ . 
 
(2)  Given the cycle structure (as defined above) together with one semi-base of any transition 
phase of any transformation cycle, the entire sequence of that particular transformation cycle is 
univocally determined, including the original standing state calculated as asymptotic virtual 
configuration of the cycle.   

 
(3)  Given the configurations of any two transition phases (i) and (i+1) that share a common semi-
base (which works as the transition vector between the two configurations), the structure of the 
relevant transformation cycle is univocally determined by use of the equations [4.15] and [4.15a]; 
from which one obtains: 
 

[4.34]                                                {Ajk} = 
( )

( )

i
jk

i
k

P
Q

  
 
  

; 

 

[4.35]                                               {Bjk} = 
( 1)

( 1)

i
jk

i
j

P
P

±

±

  
 
  

, 

 
depending on what semi-base forms the transition vector. Therefore, as per Point (2) above of this 
paragraph, all the remaining transition configurations of the transformation cycle are also 
univocally determined, plus (asymptotically) the configuration of the virtual original standing state. 
Then, from the latter, through the equations [3.30] and [3.33], it is possible to determine the 
relevant intent matrix {µjk} of the system. 31  

 
(4) If, in addition to that which is supposedly known as per either Point (2) or Point (3) above, the 
cycle’s phase that transforms into a new standing state is also fixed, then the structure of any next 
transformation cycle is univocally determined too. 

 
 

4.5 Time, age and other parameters of the simulated evolution 
 
 As already remarked in previous paragraphs, the time of the system’s simulated evolution is 

beaten by the sequence of the transition phases of each cycle. The duration of each transition phase 
may reasonably be correlated with the time unit adopted to quantify the interaction flows of the 
system’s original configuration (for example, flows detected in one hour or week or year, so that 
each transition phase may be thought of as the configuration’s changes occurring in one hour or 
week or year etc., respectively); whereas there is no logical univocal way to establish the 
watch/calendar duration of any of the standing states that the simulation describes between 
                                                            
31  This property of the simulation can usefully be applied, for example, to the study of regions or areas 
affected by critical socio-economic conditions. A couple of subsequent surveys - i.e., a baseline survey 
carried out before and a second one after any intervention aimed at coping with the critical issues - may 
provide data for both significant projections concerning the likely effectiveness of the measures taken and a 
better understanding of the possible initial causes of the present predicament.  
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subsequent transformation cycles. The standing states represent states of an average unstable 
equilibrium that may last one hour or one week or one year, respectively, or indefinitely longer. 
Thus, it is possible to assess the presumable watch/calendar time taken by each transformation 
cycle, though it would be only subjective guess establishing the expected duration of an evolution 
process that includes more than one transformation cycle. 

Therefore, there is only a conventional definition of the actual time of an evolution process, 
which limits itself to reckoning the number of the actual phases of all the transformation cycles 
completed by the simulation, up to the particular actual phase under consideration. 

There is also a conventional definition of the age of the system, which accounts for the intensity 
of the labor inherent in the transition and transformation processes, as these depend on the degree 
of efficacy of the interactions between the system’s components.  

Besides, there is to account for the “stress” affecting the system’s evolution, which is also 
defined in an attempt to quantify, as a sort of common cost indicator, the overall amount of efforts, 
accidents and troubles that the system must face and overcome or undergo to proceed through any 
stage of its evolution 

In addition, an “evolution level” is conventionally associated with the simulated evolution 
process, to quantify and express the effectiveness of the system’s overall activity. 

 
 

4.5.1 The actual time (or evolution stage) 
 
The “actual time”, or “stage”, is a way to mark the position of the system in its evolution 

process. If τcp is used to indicate the phase p of the transformation cycle c, then the actual time p
cϑ  

of the system at that phase is expressed by 
 

[4.36]                                            
0

cx
p p i

c c c
c i

ϑ τ τ
=

= +∑∑ ,      

 
in which  0 ≤  i ≤ xc  is the variable number of actual phases belonging to each particular 

transformation cycle c. For example, if 
2
3ϑ  is the stage of the system at the phase 2 of cycle 3, then 

the actual past evolution time is in this case calculated as follows: 
 

[4.37]                                        
1 2

2 2
3 3 1 2

0 0

x x
i i

i i
ϑ τ τ τ

= =

= + +∑ ∑  , 

 
in which  x1  and  x2  represent the number of actual phases belonging to cycle 1 and cycle 2, 
respectively.32 

 
 

4.5.2 The age of the system 
 
The theoretical assumption by which the system’s structure remains constant during the 

transition phases of the relevant cycle is only a way to escape the problem of representing the 
combined sequences of different and asynchronous minimal – albeit discrete in quantity – 
oscillations of the activators’ expectations, while the system’s configuration changes irreversibly.  

                                                            
32  Unfortunately, in this case, the general mathematical representation of the concept seems remarkably 
more complicated than the concept itself.  
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Such a fickle set of innumerable and mutually out-phased changes in the interaction intents is an 

extremely complicated process of individual re-adjustment of the activators’ behaviour to the 
effects of their interactions. It may be thought of as a temporary frantic oscillation of the system’s 
structure (represented by the intent matrix) around its original standing equilibrium (like, in a 
similarity, the structure of a building that trembles under the combined action of a vertical and 
wavelike earthquake); until the activators are compelled to reset and stabilize their expectations, 
with a view to keeping any possibility of interaction viable, i.e., to avoid the system’s collapse.    

In itself, the transition process entails a temporary production of additional disorder (entropy), 
which – through the transformation of the structure – may be overcompensated by a re-organization 
of the system that makes its internal (inevitable) dose of disorder drop to a level significantly lower 
than the original one. In this connection, looking at the example represented by the data of Figure 
4.9a  and by the graph of Figure 4.9b, one can observe that the production of entropy (disorder) 
prevails during the whole transition of the system from its original standing state up to the third 
actual phase of the simulated cycle (i.e., right up to the phase that is immediately preceding the 
transformation).  

 
The concept of “age” that is meaningful in this context relates to the amount of entropy produced 

throughout the system’s evolution process. Therefore, this theory provides an assessment of the 
system’s “age” through the ratio of the entropy Ec of the actual standing state to the entropy E of the 
original standing state, multiplied by the number c of completed transformation cycles (that is the 
number of undergone transformations), according to the following formula: 

 

[4.37]                                                  0
c

c
Ea a c
E

= +  , 

 
where a0 is an arbitrary “initial” value assigned to the age of the original state; a0  may either 

occasionally or conventionally be assumed as equal to 1. “Age” is here a relative concept that adds 
age to a pre-existing age however determined for the system. 33  

Thus, among possible different evolution processes with the same number c of transformation 
cycles, simulated either for the same system or for different systems of equal size, the highest ratio 
Ec /E identifies the evolution sequence affected by the most intense aging process.  

With reference to the example exercise proposed in the previous paragraphs, the age of the 
system after the first transformation cycle is given by 
 

[4.38]                            1
1 0

1.6698851 1 1.979884
1.7041659

Ea a
E

= + × = + =  ,          

 
assuming  a0 = 1. 
 
 
 
 
                                                            
33  The “evolution parameters” introduced in this and in the following paragraphs are rather to be considered 
as conventional indicators, which are defined in view of practical applications of the theory to real problem 
cases. In the original version of this theory, the “parameters” were in part slightly different; furthermore, the 
simulation operators have full liberty to modify such para-meters according to particular needs of the study 
in progress.   
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 4.5.3 Development level 
 
During simulation exercises, it may be useful considering an indicator of the “degree of 

development” achieved by the system through the simulated evolution. For this purpose, an 
appropriate indicator, meant by symbol  Λc , is the following one: 

 

[4.39]                                                       Λc c

c

S S
a
−

= , 

in which Sc and S are the system’s syntropy after c transformations and the syntropy of the original 
state, respectively.  

Quantity Λc may be either positive, nil or negative. In the latter case, the simulation has entered 
the description of a recession process of the system. The simulation regards a stagnation state of 
the system if  Λc = 0.  

 
 

4.5.4 Standing equilibrium, phase deformation and stress 
 
To proceed with the definition of additional phase parameters, it is worth going back to the 

analysis of the condition that defines the standing equilibrium state of the system. It has already 
been remarked that the equations pertaining to the equilibrium state are characterized by the 
presence of the state factor h, whose definition (refer to the equation [3.33] and subsequent ones) is 
given by 

[4.40]                                                    *

,

1

jk jk
j k

h
P ε

=
∑

 . 

 

Remembering the equations [3.45], and bearing [3.1a] in mind [by which  Pjk
* = PjQk , ( , )j k∀ ], 

from [4.40] one obtains: 
 

[4.41]                               
,

1 j
j k jk j k jk j

j k j k j

P
P Q P Q P

h Y
ε ε

 
= = =   

 
∑ ∑ ∑ ∑  . 

 
Then, (refer to [3.40]) considering that j kh Y X= =∑ ∑ , the equation [4.41] becomes 
 

[4.42a]                                                 
2 1j

j j

P
Y Y

=∑ ∑
 . 

 
Analogously, one obtains also 
 

[4.42b]                                               
2 1k

k k

Q
X X

=∑ ∑
  . 

 
These two equations together define the standing equilibrium condition of the system. As 

visible, this definition does not involve the interaction probability distribution, but only the system’s 
base and the relevant structure potentials. 
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Albeit keeping the structure potentials {Yi} and {Xi} constant during the transition cycles, each 
transition phase is characterized by transition vectors (which constitute temporary transition bases) 
that differ from the system’s original base. Therefore, the condition expressed by [4.42a] and 
[4.42b] is no more verified. Instead, it is observed that  

 

[4.43a]                                
( ) 2

( ) ( ) 1 0
i

ji
P

j j

P
Y Y

δ = − ≠∑ ∑
 

 

[4.43b]                              
( ) 2

( 1) ( ) 1 0
i i

i k
Q

k k

Q
X X

δ
±

± = − ≠∑ ∑
, 

 
where, {Pj

(i)} and {Qk
(i+1)} are the transition semi-bases of any two subsequent transition phases  (i) 

and (i+1), respectively. Quantities  δP
(i)  and δQ

(i+1) are dubbed “phase deformation on P ” and 
“phase deformation on Q ”, respectively. After division by h, the same quantities define the 
respective “phase stress” as follows: 

 

[4.44]                 
( ) ( 1)

( )

( 1)

[ ]i i
P Q ci

c
ch

δ δ
σ

−

−

+
= ,    or else    

( ) ( 1)
( )

( 1)

[ ]i i
Q P ci

c
ch

δ δ
σ

−

−

+
=  , ( , )i c∀ , 

 
depending on which transition vector starts the initial actual phase of the cycle considered.  The 
index c refers to the particular evolution cycle regarded, while h(c-1)  represents the state factor 
relevant to the system’s standing state immediately preceding the transformation cycle c in 
progress. Then, by sum on the superscript (i) of the phase stresses [4.44], also the “cycle stress” 
remains defined for each particular transformation cycle c, as expressed by: 

 

[4.45]                                                    
1

cx
i

c c
i

χ σ
=

=∑  ;                                  ( )c∀ . 

 
In simulation exercises concerning the search for alternative possible solutions to analysis or 

planning problems, the stress indicators may help to identify the most convenient choices, 
considering that both phase and cycle stress are associated with the collective effort undertaken by 
the system’s components to transit from any standing state to the subsequent one. There is to 
consider that the numerical values of the stress indicators may be either positive or negative: The 
relevant significance depends in particular on how such values contribute to the system’s stability, 
to which they are obviously connected through the state factors hc-1 . 
 
 
5. Possible uses of the theory – Defining the system’s mutations 

 
The contents of the preceding chapters are substantially summarized by the schematic example 

of simulation carried out in Chapter 4. That example exercise intends to show that the main aim of 
this theory is to provide any interested reader with a workable method for tackling issues that regard 
the behavior of “complex systems”, especially in simulating their possible evolution processes. 
Many of such processes, particularly those that regard the activity of biological communities of a 
higher level of organization, do not allow observers and analysts to carry out scientific experiments 
and tests. It seems then necessary or convenient shifting observation and tests to the level of 
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reasoning, focusing on the logical consistency of the mental processes that utilize the observation 
data collected.   

The ways in which the method can be applied entail the use of adequate, albeit not complicated, 
computer programs and relevant computerized work, which basically consists of numerical 
calculations, in consideration of the very large number of data that shall usually be collected and 
processed as to the behavior of complex evolving systems.  

Indeed, any satisfactory simulation can be performed only through a large number of reiterated 
trials, each of which must be prepared through a series of preliminary checks and statistical 
adjustments on the primary data collected. 

It seems also worth observing that the generality of the features that make a system recognizable 
is a significant aspect of the method here introduced; which suggests that the method is usable in a 
variety of possible study cases. 

 
 

5.1 Regional economic systems 
 
The origins of this theory are in the initial attempts to model the inter-relations between human 

settlements of a region, which involved – as it normally involves – difficult survey operations. 
Difficulties relate principally to the identification, selection and quantification of the relations that 
could make the simulation of any regional evolution significant.  

As an acceptable simplification, in a number of applications of the theory to real cases, it was 
assumed that the flows of people and commodities from one place to another – as observed at any 
scale - constitute the most significant set of interactions, which – once detected and suitably 
quantified – can allow the observer/analyst to try useful descriptions and simulations of the regional 
activity and development process. The assumption is based on the observable fact that all other 
kinds of interrelations, such as those that occur via postal, telephone, Internet, mass-media 
communication, as well as through financial transactions, manifest their physical effects through 
displacement and resettlements of peoples and commodities. It is the system of detectable motions 
that alter with time the physical aspect as well as the functions of any studied region. In other terms, 
the interactions between different people and distinct settlements of a region consist in flows of 
information, which - through the displacements of people and commodities - transform into 
physical motions and landscape changes.  

However, technical difficulties, particularly in establishing a homogeneous measurement system 
for the different kinds of flows observed (for example, transfers of people and transfers of 
commodities) lead analysts to deal often with different interactions by means of separate analyses 
and simulations, whose findings shall subsequently be superimposed or combined somehow in view 
of credible syntheses and conclusions. 34 

 
As far as economic systems are concerned, an interesting suggestion comes from that particular 

section of econometrics that addresses the interactions between the activity sectors of any regional 
economic system, with no involvement of the philosophical postulates (or axioms or universally 
shared assumptions) and categories proper to the thought of political economics. 

The trouble with macro-economics and political economics in face of the real world is the same 
as the trouble that affects philosophical thought since ever: The unexpressed (that’s why it seems 
impossible to eradicate it) axiom by which the “territory” of reality must coincide with the “maps” 
                                                            
34  For practical purposes, in most transportation studies engineers adopt a measurement criterion based on 
the so called “passenger car units” (pcu), which seems adequate to homogenize transported quantities of 
both people and commodities. (An example of partial application of this theory to a transportation study is 
in:  www.mario-ludovico.com/pdf/traffic_flows.pdf).   
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of thought. As a matter of fact, the appeal of theoretical macro-economics and political economics 
is so charming that if one enters that world then finds it almost impossible to get rid of that peculiar 
way of thinking; like difficult is for people affected by schizophrenia or alcoholism to get rid of 
hallucinations. 35 

American economist Wassili Leontiev (1905-1999) moved his own theoretical thought from the 
charming cages of political economics to a sharp pragmatic way of thinking, in the attempt to 
suggest criteria for a more realistic analysis and – possibly – for a more effective control on the 
economic system of any country or region.  

Leontief proposed a new method to make out any economic system and to probe its sensitivity to 
the changes expected in consequence of political decisions involving the economic activity of the 
relevant region. The method formulated by Leontiev did initiate that branch of econometrics known 
as analysis of inter-sector economic relations, more frequently and briefly mentioned also as input-
output analysis.  

The leading concept consists in subdividing, in a way that is as far as possible detailed,  the 
whole regional economy into a system of different inter-related sectors of activity, and in 
quantifying the transactions occurring between such sectors during any given time unit, for instance 
during one year.  

The method sticks to the statistical measurement of the interaction flows between sectors of a 
given economic system, with no other “prejudice” than the criterion adopted for identifying the 
various inter-related sectors. To note that such a kind of statistics is nowadays available in every 
developed country and in several developing ones. 

 From the methodological point of view, however, the choice of the criterion for identifying the 
“economic sectors” is inevitably sufficient to undermine the full objectivity of the analysis, as it also 
happens in identifying and recognizing any system. There is to consider that each “economic 
sector” consists in the thought aggregation of different activities, some of which – because of the 
respective typology – might be included in one sector instead of another, according to the analyst’s 
criteria. 

The production (output) of each sector is strictly depending on the portions of its production 
purchased (i.e., demanded as production input) by the other economic sectors. 

 The only hypothesis, which constitutes also the crucial technical limit of the method, is that the 
input of each sector is directly proportional to the respective output. In principle, concerning the 
production system, the hypothesis is hardly questionable: Everybody would agree, for instance, on 
that the amounts of coal, mineral materials, labor, energy, capital money, transport costs, etc., are 
directly proportional to the amount of steel produced; and analogously for other sectors.  

By this criterion, Leontiev could construct a numerical table (matrix) of inter-industrial 
relations, which basically consists of proportionality coefficients, usually mentioned as “production 
technical coefficients”, to be assumed as constant quantities. 

The basic idea is simple. Example: to produce A tons of steel, it is necessary to buy K kilograms 
of coal, I kilograms of iron mineral, W watts of energy, M hours of manpower, F dollars of financial 
services, T dollars of transport, etc. Leontief’s method assumes that the numerical ratios defined by 
K/A, I/A, W/A, F/A, T/A, etc., keep constant with time, quantities K, I, W, F, T, etc., being in turn 
partial products of other activity sectors of the same economic system. The assumption can be 
summarised saying that the purchase of these quantities is in a direct proportion to the quantity of 
the product A regarded. In principle, it’s quite a reasonable assumption. 

                                                            
35 Unfortunately, it seems that the trouble is also with basic physics and cosmology, at least since half a 
century. A worldwide overcrowded club of highly skilled mathematicians-conjurors have involved human 
societies in huge and foolish expenditures to create – instead of finding – the objects of their own 
mathematical deliriums. 
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Therefore, analogous obvious considerations apply to any production activity of the system; so 
that a set of simple simultaneous (inter-related) linear equations can be written to describe the 
system of relationships by which each activity is tied to all the other ones. In this way, it is possible 
to calculate, for example, the extent to which the product of the whole economic system depends on 
alterations in the production of any individual activity sector.   

 
[ One only example equation should be sufficient to make the criterion clear.  Consider an economic 

system formed by N different economic sectors, indicated with “1”, “2”, “3”, … , “n”.  Assume that the 
amounts of the yearly sector productions (outputs) are symbolised by  x1 , x2 , x3 , … , xn , respectively.   

According to Leontief, it is possible to establish fixed ratios { aij } – dubbed “technical coefficients” – 
between each sale qij from any economic sector “i” of the system and the production of any buying sector 
“j”.  Thus, the technical coefficients relevant to the sales of production  xi  are defined as follows:   

                                 ai1 = qi1 /x1 ;     ai2 = qi2  /x2 ;     …    ;      ain = qin  /xn  ,  
 
which simply means that each sale  qi1, qi2 , …,qin  from Sector  i  is directly proportional to each production  
x1 , x2 ,…, xn   of the respective buying sector.  

The sale from Sector “i” to each other sector is clearly just one portion of what “i” produces, i.e., a 
portion of its overall production. xi . Therefore, production xi can be expressed as the sum of the demand 
from all the other sectors, each demand being directly proportional to the production of the respective sector. 
Mathematically, this means that production xi can be expressed as a linear combination of the other sectors’ 
productions, each of which is multiplied by the pertaining technical coefficient (needless to say, every 
technical coefficient is a number less than 1). 

Adopting monetary units to homogenize the measurement of whatever product, the situation is then 
summarised by the following simple equation:  

 
[5.1]                                    xi  = ai1 x1 + ai2 x2 + … + ai2 xn  .   

 
It’s now clear how the total output  xi  of any Sector i may vary in consequence of changes in the 

productions x1 and/or  x2  , and/or  x3  , etc., of other sectors, for each addendum  aij.xj  is the demand of j for 
its production factor sold by i. 

 Identical reasoning is applied to every other sector, to write the set of simultaneous equations that 
describe in precise quantitative terms the interdependence between all the activity sectors of any economic 
system. ] 

 
One practical problem in applying the method arises because each of the identified sectors does 

not consist of a single type of production plant, but the sector – due to an inevitable need for 
simplification – aggregates the outputs of several different activities, which are akin but not 
identical to each other: So that the inter-sector transactions cannot be measured in homogeneous 
product units (e.g., in tons, or cubic meters, etc.) but only as transaction flows expressed in 
monetary units.  

Additional practical difficulties intervene when the analysis aims at long term predictions, which 
cannot necessarily account for the immanent disturbing role of technological innovation and 
unforeseeable changes in the price/cost of some inputs or in unpredictable market or governmental 
policies. 

Notwithstanding the inherent practical difficulties, Leontiev’s conceptual approach to the 
economic macro-analysis is revolutionary, in that it does not break down the study system into 
selected conventional economic categories (labor, capital, investment, marginal utility, elasticity of 
demand, offer, market equilibrium and/or transparency etc.). Instead, the analysis limits itself to 
identify and account for transactions between different activities, intrinsically and objectively 
measurable irrespective of their nature and of any cause or end that determines them. The 
methodological scheme, in other words, may be applied to any society and economic system, 
provided that the basic assumption is verified, i.e., that an acceptable degree of linear inter-
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dependency between the different activities exists. In itself, Leontiev’s inter-sector analysis has no 
reference to any particular school of economic thought.  

Beyond all possible criticism, it is an important attempt to free macro-economics from abstract 
philosophical speculation, with a view to keeping the observation of a complex system within a 
least-biased conceptual reference frame. 

As known, after the original scheme proposed by Leontiev, the method has undergone a 
remarkable number of improvements and adjustments, and the input-output inter-sector analysis has 
been adopted by several governments for managing national accounts. It is a fact that the method, 
despite the approximations associated with the hypothesis of linear dependency between the 
system’s activities, provides analysts with a useful calculation instrument to get credible short term 
indications about the expected impact on the whole system caused by possible alterations in the 
activity of one or more of its sectors. No other model can provide the analysts with a credible 
objective indication of what impact, for instance, on clothing industry could be expected from an 
increased investment in automobile industry, or what impact on fishery production could be 
connected to a decrease in the family savings.  

Actually, the method constitutes the first usable instrument of complex systems analysis. The 
observation and measurement of interactions between human activities, along with the identification 
of the functional nature of the relationships, accounts for all that which motivates and determines 
the behavior of the members of a self-organized human society, including the chaotic set of 
individual intentions, prejudices, errors and superstitions. All this is completely, as well as indistin-
guishably, expressed by the intensity of the measurable transactions. 

 
 

5.1.1  A further step 
 
The methodological jump made by Leontiev in addressing macro-economic issues is an 

encouraging suggestion to go further along the conceptual path he has indicated. 
Leontiev’s inter-sector analysis, as already remarked, is affected by at least one ill-working 

functional hypothesis, the one regarding the “technical coefficients” of direct proportionality 
between inputs and relevant outputs. The analytical need for the aggregations of various akin 
different activities makes the direct proportionality between input and output not only questionable, 
but systematically unstable with time, mainly – but not only – because of frequent alterations in the 
prices of the production factors along with unforeseen productivity changes in some of the activities 
considered. The method would be quite adequate, especially as for short run projections, if the 
“technical coefficients” would be constant quantities. Unfortunately, experience has widely shown 
that it is not so. This fact has actually implied a complicated and endless work of formal 
adjustments of the method together with a continuous updating activity concerning the set of values 
forming the matrix of technical coefficients. 

Moreover, there is to consider that the simultaneous equations, of which equation [5.1] above is 
a sample, does not usually escape the mathematical problem of providing positive solutions only. A 
possible remedy to this particular problem could be dealing with equation unknowns that represent 
production increments instead of total production amounts (i.e., {∆xi} instead of {xi.).36, but such a 
remedy implies additional statistical work for pointing out the sector production increments and 
checking to what extent the relevant technical coefficients reflect the proportionality expected. 

                                                            
36  At variance with the total production of each sector, sector production increments {∆xi} may be either 
positive or negative or null.  
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That is why the management of national and regional accounts by means of the input-output 
analysis suggested by Leontiev has in most cases become relatively burdensome and costly, with 
results often unreliable though.  

According to Leontief’s initial approach to the analysis of an economic system, the inter-sector 
relationships, as per time unit, show the following configuration: 

 

[5.2] 

? T01 T02 … T0n T0F Imp 
T10 T11 T12 … T1n T1F T1 
T20 T21 T22 … T2n T2F T2 
… … … … … … … 
Tn0 Tn1 Tn2 … Tnn TnF Tn 
Exp D1 D2 ... Dn DF T 

 

 
In this transaction configuration, Tjk – as usual – represents the transfer of goods or services from 

any Sector j to any Sector k, index “0” relates to the production sectors of “the rest of the world” 
(i.e., the “external sector”), “Imp.” represents the total amount of imported products, “Exp” 
represents the total amount of exported products, “Dj” represents the total demand of any Sector j 
for production factors, “TjF “ represents the amount of production sold by any Sector j to the so-
called “Final Sector”, which is the “Consumption Sector”. T = ΣTj represents the overall production 
of the economic system. The elements “Tjj” in the diagonal of the inter-sector transaction matrix 
(the self-interactions of the economic system) represent the transactions occurred within each sector 
between distinct akin production centers. 

One of the economic sectors in the scheme was reserved to the labour input, which – though 
being a major production factor – was not the destination sector of any product, since “one side” of 
the labour sector was included as a product consumer also in the so-called final sector. A 
subsequent more compact configuration of Leontiev’s input-output scheme removed the final sector 
and introduced the “Household Sector” as labour provider and product consumer, thus squaring the 
input-output matrix. Obviously, the “technical coefficients” that state the direct proportionality 
between the households’ earnings (output, in terms of sold manpower) and the households’ 
expenditure (input, as purchase of goods and services).

37 is only an additional hypothesis, which, in 
the many contexts of practical applications of the method, is not unreasonable.  

The question mark “?.” in the position of the first element of matrix [5.2] represents the unknown 
self-interaction of the “external sector”. In Leontiev’s scheme, sector self-interactions are usually 
important enough not to be neglected. If, for example, the aggregation of activities entails – for 
simplification needs – the inclusion of the industrial factories that produce steel, metal tools, 
machinery, automobiles and the like, in one and the same “Metal & Mechanical Sector”, it is clear 
that exchanges of products between different factories, within the same sector, are inevitable. Only 
at a much lower level of aggregation of the economic activities (for instance, with reference to the 
preceding example, keeping steel-mill factories, rolling mill industries, tool factories, motor-vehicle 
industry etc., as economic sectors distinct from each other) it could practically be acceptable 
assuming that the sector self-interactions are negligible with respect to the transactions between 
each of such sectors and all the remaining sectors of the economic system. 

However low the aggregation level may be, the self-interaction “ ? “ of the external sector (“the 
rest of the world”) can in no case be considered as negligible. This means that Leontiev’s 
interaction system can never be closed: There is no acceptable way for completing the squared 
scheme with a justifiable figure in replacement of the question mark; no logical instrument is 
available to solve the problem by connected econometrical means. 

                                                            
37 Any form of savings concerning households may be considered as self-interaction of the household sector.  
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This fact, amongst other different cases of interactions between human activities, has suggested 
the leading criteria to be adopted for formulating the theory expounded in this paper.  

By exclusion of any hypothesis concerning either technical or market causes that determine the 
inter-sector transactions, and accounting only for the statistics of the interaction flows assessed in 
terms of monetary amounts exchanged between the sectors, the revised input-output analysis of any 
economic system allows, through a logical procedure, the determination of the most probable 
implicit flow, by which the representation of the economic system can both be closed and probed by 
simulation of possible evolution processes. 

Perhaps, it is not necessary to underline the utility of this new instrument to probe the likely 
effectiveness of possible socio-economic policies. Just concerning economic systems, it is also 
worth noting that the new method is not troubled with problems relative to the aggregation of more 
or less akin activities: What matters is only that the different sectors are thought of as playing 
clearly differentiated roles within the economic system considered. 

  
 

5.2 The case of a system evolution at constant stability 
 
In the last paragraphs of Chapter 2, the evolution of any system has been graphically suggested 

as describing arcs of ellipses, whose major axes represent the entropy potentials of the evolving 
system.  

The shape of an evolution ellipse remains in general unchanged until base entropy and base 
syntropy remain unchanged too; which also means, obviously, until the system’s stability 
represented by the base syntropy S* remains constant.  

However, as usually shown by the transition phases of a simulated evolution, the hypothesized 
(or observed) changes in the system’s base entail redistribution of the base probabilities in a way 
that implies also changes in the stability of the evolving system, while the major axis of the 
evolution ellipse remains unchanged with the number of the system’s components, these 
determining the system’s potential. 

In general, once fixed the size of its major axis, the shape of the ellipse changes with the shifting 
of its focuses, as their position determines the size of the minor axis. The shift of the focuses takes 
place along the major axis according to the extent of the base syntropy (or of the base entropy), 
which in turn depends of the distribution of the base probabilities.  

 
Figure 5.1                                                    

 
 

This figure recalls the features of the mentioned evolution ellipses 
The common major axis represents the system’s entropy potential H=2lnN 
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Nevertheless, it is possible to think of evolution processes that develop at constant stability, thus 
keeping the system’s evolution path on the stable perimeter of the relevant ellipse. Remember that 
innumerable different configurations – regarding either the same system or different systems – may 
share a common base (refer to Paragraph 2.9), whereas different conjugated syntropy and entropy 
levels (i.e., S and E) are associated with each different interaction distribution.  

In order for any evolving system to keep its stability constant, it is sufficient that the ratio of the 
overall activity of each component (i.e., input+output) to the system’s total activity remains 
constant.  

Actually, stability in evolution may in general occur if changes in the base probability 
distribution are associated with a mutual compensation in the values of the addends of the sum that 
defines the formula for the base entropy; in this connection it is worth remembering the definition  

 
[2.39]                         E*.=.Σ(Pi.lnPi.+.Qi.lnQi).=.2lnT.–.(1/T)Σ(Oi.lnOi.+.Di.lnDi)  
    
given for base entropy and the definition [2.42], i.e., S*=.2lnN.–.E*, given for base syntropy , which 
measures the system’s stability. 

Constant or quasi-constant stability intervenes in the simulated evolution process also when the 
system’s syntropy approaches closely - or oscillates in a close proximity of - its possible maximum. 
It is worth bearing in mind that any system cannot exceed a specific maximum syntropy, for it 
cannot compress the amount of its intrinsic disorder (entropy) below specific levels. (Referring to 
Figure 5.2 above, when position P joins point V, System 2 achieves its maximum level of syntropy, 
while its base entropy E*

2.min - which at point V coincides with the system’s entropy E2  -  cannot be 
reduced further).   

Every system brings in itself a physiological amount of entropy (disorder) that is inherent in the 
recognition-definition of system adopted by this theory. The interaction distribution, in which any 
described system consists, is by definition affected by an irreducible amount of uncertainty, which 
depends on the lack of information or knowledge that hinders a complete perception and description 
of the causes that determine the end and the intensity of each interaction.  

Therefore, especially in systems that have achieved a relative level of maturity, the degree of 
internal organization attains a relevant optimum, beyond which a further increase in the system’s 
syntropy is unlikely or impossible: Unless a mutation intervenes to change the entropy potential of 
the system, the achieved standing state tends to become a stable one. 

For example, referring again to economic systems, persistent stability in their evolution may in a 
number of cases be associated with a gradual replacement of previous activity sectors by emerging 
activities that adopt new technologies, though producing commodities and services of the same kind 
as those replaced, often shifting the respective production amounts from one sector to another one, 
for example from craftsman-ship to industry or from agriculture to industry, or from the mining 
sector to the energy sector, etc. In this way and in particular cases, the base probability distribution 
concerning percentages of sector aggregate products doesn’t modify the base syntropy/entropy 
significantly, with the consequence of securing a longer stability for the system.38 

 
Besides, stability may also characterize involution processes, in which systems achieve a state of 

rather stable equilibrium after moving towards states of increasing entropy. In the real world, it is a 
process that occurs when the components of a system tend to simplify and isolate the respective 
activities, and the interactions become less and less structured by a network of interdependent 
intents. The randomness of the interconnections tends to increase progressively, because the kind of 
                                                            
38 An illustration of this kind of replacement process is given in the attachment herewith (Syntropy: 
Definition and Use, reviewed excerpts). 
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activity of each component tends to differentiate very little from the activities of the other 
components of the system. Consider, as an extreme example, a hypothetical set of small countries - 
in a particular geographic region – where the principal activities are quite similar in all of them and 
substantially consisting of would-be self-sufficient agriculture and animal husbandry. The economic 
interactions between such countries are often non-systematic, consisting of occasional exchanges of 
agricultural and/or local craftsmanship products. 39 

 
 

5.3 Mutation in a system 
 
Any system shall be understood as a set of different components, which interact with each other 

because of the need to integrate different complementary functions. Thus, if it is a human system, 
each individual plays a different role in self-connecting with other individuals, like in the example 
suggested in Paragraph 2.6. Or else, if it is an economic system, the relevant sectors play different 
economic roles: The number of sectors does not increase by adding one or two new metal-mill 
factories to the existing ones in the relevant sector, but only by addition of a quite novel economic 
sector, such as – for instance – a motor-car/automobile industry, or electronic industry where such 
sets of activities are absent.  

Symmetrically, the number of components of any system does not decrease because of the 
diminution in the overall activity of one or more components (e.g., if a couple of factories of those 
belonging to the textile sector cease their activity), but because of the disappearance of one or more 
components and relevant functions; as it happens, for example, when a basic extraction industry 
(such as coal or copper or iron mining activity) disappears from a regional economic system or 
when the section of wind instruments is definitively removed from a symphony orchestra. That is to 
mean that the number of the system’s components does not consist in the number of the akin 
activities carried out by each component, but only on the number of different functions that 
characterize the overall activity of the system. Therefore, size N of any system means “system of N 
components each fulfilling one of N different interrelated functions that pertain to the system 
considered”. 

The emergence or the disappearance of one or more new components is referred to as a 
“mutation” of the system under study. 

The first effect of a mutation is a change in the system’s entropy potential: New additional 
components imply an increase in the entropy potential, whereas the disappearance of components 
implies a decrease in the entropy potential of the system, as it is obvious as per the definition itself 
of “entropy potential” (H = 2lnN). 

Mutations in the evolution of any system may be expected, but they are in most cases 
unpredictable. If, in representing any system evolution, a particular kind of mutation is expected, 
the effects of the emerging event can be quantified only if the distribution and intensity of its 
interactions with the other pre-existing components of the system are known. New appropriate 
surveys on the new situation of the real study object are indispensable to undertake useful 
simulations. Consider that the introduction of every new component in the system means the 

                                                            
39 It is a situation that characterized a number of ex-colonies, especially in Africa, during a period that 
followed the end of the de-colonization process. Embryonic industrial sectors and updated technological 
activities established by the colonial regimes were dismantled or abandoned, thus mutating the local 
economies, and leaving only a basic infrastructure network together with “remains” of administration 
organisms that were not existing before the colonization era. (As early references, see for example H. Isnard, 
Géographie de la decolonisation, Presses Univ. de  France, Paris 1971, or P. Bohannan & G. Dalton editors, 
Markets in Africa, Northwestern Univ. Press, Evanston 1962).  
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addition of a new function to the pre-existing ones. All the previous intents and interactions are 
modified together with the system’s structure. 

In some cases, mutation can be expected when the evolution brings the system to a relative 
saturation of either syntropy or entropy, otherwise the alternative is for the system to lay in a 
permanent stationary state; which is obviously possible though normally unlikely. Therefore, 
“mutations” may entail either a progression of the system towards a higher level of complexity 
(when the number of the components increases) or a regression (when one or more components 
disappear from the system).  

Alternate series of progression and regression are not only possible but also observed, especially 
concerning human societies or economic systems. 

Moreover, cases of replacement are also possible, when the emergence of a new component is 
“compensated” by the disappearance of another component. In such cases, the system’s entropy 
potential does not change. 

Considering that mutations are basically characterized 
by changes in the system’s entropy potential H, a 
spiral like that shown by. Figure 5.2 beside may – 
schematically and in general – represent the path of any 
evolving and mutating system, for which H might 
represent the entropy potential of either the initial or 
the final state of its evolution. The spiral develops 
around and along its major axis (the mutation axis), 
which contains all the major axes of the evolution 
ellipses in the system’s story.  

                                                                                                             
                                                                                                        

5.4 Some quickly derived models 
 
In analyzing, for example, the human settlements of any study region, the interaction systems 

between population centres may usefully be represented by a set of so-called “gravitational 
models”, which are based on the observed determinant role that the distances, between settlements 
of various sizes, exert on the intensity of the settlements’ mutual influence. According to 
geographers who initiated regional science,40 it is the distribution itself of human settlements over 
any territory to favor the formation of certain cities instead of others and to determine the 
topographical pattern of the respective hierarchical importance within the study region. Through 
patterns of that kind it is possible to recognize the existence of regional systems. 

According to primitive models, the link strength Ljk between two population centers Cj and Ck  is 
quantitatively expressed by equations of the following type  

 

[5.3]                                                       2
j k

jk kj
jk

I I
L g L

d
= = , 

 
in which Ij and Ik represent the number of inhabitants in Cj and Ck, respectively, djk is the distance 
between the two centres and g is a proportionality coefficient empirically determined, case by case. 
                                                            
40 Amongst the major forerunners, J. von Thünen, Der isolierte Staat in Beziehung auf Landwirtshaft und 
Nationalökonomie, Perthes, Hamburg 1826 (reprinted by Fisher, Jena 1921); W. Christaller, Die zentralen 
Orte in Süddeutschland, Fisher, Jena 1933; A. Lösch, Die räumliche Ordnung der Wirtschafts, Fisher, Jena 
1940; many followed later.  
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The adjective “gravitational” was attached to models of that kind because of the formal 
similarity between the mathematical shape of equation [5.3] and the universal gravitation equation 
formulated by Newton to express “the attraction strength” between two massive bodies.41 

Subsequently, “gravitational” equations adopted in regional science were variously reshaped, 
also in view of different particular uses aimed at specifying the nature of the link; as in the case of 
traffic studies, for example, where the “importance” of the traffic flows from any Cj to any Ck is not 
necessarily symmetrical with the flows that go in the opposite direction. 

Notwithstanding the many changes intervened, gravitational models are still largely used in 
urban and regional studies because of their simplicity and acceptable efficacy in providing 
significant indications in practical planning activities.  

If quantities Ij and Ik in the “gravitational” equations [5.3] are replaced, for instance, by 
quantities Oj and Dk , respectively, to indicate the actual or potential interaction origins and 
destinations, whatever the respective nature, in conjunction with the substitution of the distance d 
with any function of variables fit for quantifying the friction of the distance between the two 
centers, then the theory expounded in this paper presents its own “gravitational” proposal with 
equations like the equations [3.36] and the connected ones, from [3.36] to [3.49]. 

Equations [3.36] state that, given any system of N interacting centres, the interaction between 
any couple of centres is expressed by 

 

[5.4]                                                    jkuj k
jk

O D
T h e

T
λ=                          (  j, k), 

 
in which – allowing for the definitions [2.15] and [2.16] introduced in Chapter 2 – the friction of 
distance, in economic terms, is expressed by 
 
[5.5]                                                    λujk =  λ(bjk –.cjk)                           (  j, k),          
 
bjk being the average “reward” obtained by the interaction flow from j to k., and cjk is the cost of the 
same interaction, which obviously includes the cost to cover the distance from the two activity 
centres.  

In the equations [5.4], as usual, T.=.ΣOi.=.ΣDk, while “gravitational” coefficient  h.=.e–S*= 
=exp{2ln(T/N) – (1/T)Σ(OilnOi+DilnDi)}  remains constant with the system’s base {Oi} & {Di}, and 
λ is also a constant coefficient, which depends on the measurement system used to quantify the 
interaction flows. 

Simplifications are obviously possible, especially as to the quantity bjk, which – being an average 
quantity – may in some particular cases be considered as a relatively constant “destination reward” 
with respect to all the interaction origins. In this way, the equations recalled by [5.4] become similar 
to the “gravitational” models that are more frequently used in regional science, in that the 
interactions are basically made depend on the cost associated with the distance. Thus, the simplified 
equations [5.4] become “gravitational” in the following form: 
 

[5.7]                                                  
jk

k j k
jk c

B O D
T g

eλ=  ,                         (  j, k), 

                                                            
41  On this occasion too, it seems worth reminding the reader that Newton himself did not consider his 
gravitation equation as an expression of attraction force inherent in masses. 
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where  g.=.(h./.T) is the system’s constant, and Bk = λbk indicates that the average benefit Bk , which 
“rewards” every interaction unit bound for destination. k. and does not depend on the source of the 
interaction. 

Upon field-surveys carried out on interaction systems, a  reverse use of equations [5.7] could 
provide analysts with significant indications about the economic distances {δjk} between interacting 
centers, according to the following obvious relations: 

 

[5.8]                                           ln k j K
jk jk

jk

gB O D
c

T
δ λ

 
= =   

 
 ,                 (  j, k), 

 
by which, positing Bk.=1 (or any other appropriate figure instead), it could be possible to assess the 
relative economic distances estimated from the k’s standing point. Consider this, for instance, as 
one supplementary “tool” for the choice of convenient locations of new commercial centers or 
administrative structures in any given urban/regional area. 

Other possible simplifications or uses of models derived from the theory should be allowed for in 
consideration of the canonical and semi-canonical equations [3.42] to [3.49], thanks to the system’s 
structure potentials {Xi} and {Yi} as per the respective definitions [3.41]. 

 
 

6. A few conclusions and philosophical comments 
 
 

6.1 Theory as method 
 
It is not a scientific theory. The contents of the foregoing chapters constitute a methodological 

proposal only. It is not a theory that purports to explain what a complex evolving system is. The 
text intends just to suggest an operational way to represent sets of events that an observer can 
recognize as being both in a “complex mutual inter-connection” and “evolving”, according to his 
own mental and linguistic apparatus, discernment capacity and interested attention. In the awareness 
that all that which he learns by experience remains – intrinsically – only a mental representation of 
his experience; he certainly apprehends neither “the thing in itself”, nor the objectively true features 
and causes of the real source of his experience.  

Systems are subjectively viewed as physical flows of interactions between activators that are 
supposed to generate interactions intentionally, i.e., with the purpose of achieving goals. I deem it is 
a basic and quite general assumption that may be shared by the majority of the observers who try to 
describe the activity of any self organized system. Therefore, the theory associates a different 
average intent with every different interaction observed, though it considers the observer as aware 
of the fact that “average intent” is only a statistical expression for a quantity that is impossible to 
seize in its true nature, and whose existence is a theoretical fiction used to represent a guess about 
one particular aspect of the reality under observation.  

In this connection, not only are such intents defined by the theory as depending only on the 
detectable interactions they motivate, but each intent is also thought of as inherently affected by 
precariousness. This aspect is discussed in detail in the original Italian text of the theory,42 where – 
besides the definition of intent given by the equation [3.50] in page 61 of preceding Chapter 3 – 
another (equivalent) definition of this particular quantity is provided also by the following equation 

 

[6.1]                                                     µjk = H – ξjk ,                            (  j, k), 

                                                            
42 See L’evoluzione sintropica… , op. cit.,  pp. 118-122 



Syntropy 2013 (3): 50 -153 ISSN 1825-7968
 

143 

 

 
where, as usual, H.=.2lnN is the system’s entropy potential and ξjk represents the intent’s inherent 
precariousness as expressed by the following equations: 

 

[6.2]                          ξjk = E*– *ln jk

jk

P
P

 
  
 

= E*– *ln jk

jk

T
T
 
  
 

                (  j, k). 

  
in which the involvement of the base entropy E* is given evidence. Moreover, the interaction flows 
{Tjk}, {Tjk

*}, together with the respective probabilities {Pjk} and {Pjk
*}, are also statistical 

assessments made by the analyst upon the findings of on-the-field surveys, which bear in 
themselves an inevitable dose of uncertainty associated both with the execution of the surveys and 
with the interpretation of the data collected. 

Consider again that such a methodological proposal does not concern every recognizable 
complex evolving system, but only those systems that one can represent as consisting of interaction 
flows between couples of interaction origins and destinations, whatever their nature. Indeed, one 
salient aspect of this way to represent systems is that the analysis – at variance with other theories 
about complex systems – focuses neither on the “agents” (the acting components or “activators”) of 
the system nor on the physical web (or infrastructure network) that connects each component to the 
other ones. The attention of the analysis is entirely focused on the nature and intensity of the 
interaction flows by which the system’s components are interconnected. Furthermore, such 
interaction flows are elements that pertain to the theory only if they are practically measurable.  

Equations [3.60] and [6.1]-[6.2] show how all the needed information concerning the identified 
system can be expressed through functions of the interaction flows.   

    From a practical point of view, as already remarked, all this means that the significant amount 
of information concerning the state of the system can be obtained – according to the theory – 
through any appropriate collection, interpretation and processing of the data that quantify the flows 
of interaction. 

    However, and this is the fundamental methodological statement, all the information obtained 
from the theoretical analysis depends strictly on how the system is recognized and described. The 
simulation exercises suggested by the theory do not provide any true picture of the reality to which 
the analysis refers, but only the logical implications of a mental representation of it. 

 
Yet, the same methodological proposal makes sense only for those study cases that do not allow 

observers and analysts to carry out experimental activities in which the observed events can be 
replicated and controlled at will. In all the cases in which experimentation is both replicable and 
effective, any relative theory works usefully if it keeps in a dialectic relationsip with experience. 
This means – in those cases – that mental representations of experience can be subjected to practical 
tests, whose results can either corroborate or belie the related theoretical statements and predictions. 

Instead, when no significant experimental test can be carried out, theoretical works must only 
rely on the soundness of their observational basis (i.e., on the reliability of the data collected) and 
on the logical consistency by which the data are processed. Statements from such theories can only 
consist of reasonable illations and probability assessments of event occurrence. 

 
The preceding Chapter 5 has lingered on the example of regional economic systems, for these 

systems are a paradigmatic example of the “systems” meant by the theory expounded in this paper. 
Consider that the components (the “activators”) of regional economic systems, which are referred to 
as “sectors”, are not individually and obectively identified and localized in space by the “observer”, 
since each “sector” consists of various never seen akin activities spread over large territories. In 
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fact, each “sector” is a mental representation of a group/class of activities, which interacts with 
other goups/classes of activities, irrespective of their locations and of the connection infrastructure 
used, whereas the interactions between different sectors, and within each sector, are actually 
detectable, measurable in terms of monetary transactions and formally recorded by statistics. 

 
 

6.1.1 Simulation of the system’s evolution 
 
The most important equations provided by the method are those which enable the analyst to 

simulate the system’s evolution process.  
Conventionally, this kind of simulation considers any flow distribution obtained from surveys (or 

other observation operations) as the representation of an original equilibrium state (“standing 
state”) of the system under study. This original equilibrium state is intrinsically unstable, and the 
relevant observed configuration shall be taken as an average configuration about which the system 
fluctuates precariously. 

    “Intrinsic instability” means that reversible fluctuations in the flow distribution within the 
original configuration are inherent in complex systems, though some irreversible alterations will 
sooner or later appear to modify the system’s activity irreversibly: Any minimal irreversible 
alteration in the fluctuating equilibrium of the flow distribution (or in the relevant probability 
distribution), which modifies also the base entropy of the system, generates a corresponding 
particular initial phase of an irreversible "transformation cycle". 

 
Summarizing, the evolution process is described by a sequence of "transformation cycles" that 

start from an original standing state of apparent equilibrium. Each cycle develops through 
discontinuous "transition phases", which are changes in the system’s state, each phase being 
described by a different distribution of the interaction flows.   

In every phase of a transformation cycle, the condition of the system is expressed by a set of 
parameters (state or phase parameters), amongst which entropy, syntropy, stress and/or latent 
stability are the most significant ones.  

    Any transformation cycle is identified by an "initial phase", which is determined by any 
observed irreversible change – however small – in the original flow configuration, if the irreversible 
change modifies also the system’s base entropy E* or syntropy S*, the latter representing the 
system’s stability. (Note that the system’s base entropy and syntropy may remain unmodified with 
an indefinite number of particular changes in the system’s flow configuration).  

Therefore, the initial transition phase of an evolution process is not the original state. Instead, 
the initial transition phase is viewed as one particular episode of a transformation process in 
progress, which then continues through a sequence of actual transition phases, each representing a 
period of the system's simulated future. Thus, the initial phase is in turn supposed to be connected 
with the original state through a sequence of virtual transition phases that represent the virtual (not 
observed) “past story” of the initial phase.  

 
 It is worth remembering that a sequence of actual phases describes one transformation cycle, 

which may – or may not – be followed by further transformation cycles.   
During each cycle, the continuity in the identity of the studied system rests on two sets of 

quantities, dubbed “structure potentials” and represented by matrices {Xk} and {Yj}. The value of 
each structure potential ranges between 0 and 1. The structure potentials remain constant with the 
system’s structure {µjk} (the “intents”) during the transition phases of each cycle, until they change 
by transformation together with {µjk} at the conclusion of the cycle. If no “transformation” occurs, 
the theory assumes that the system disbands at the end of the cycle. 
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Simulations are possible only if a complete set of “original” interaction flows is given. Amongst 
the system’s components, there is always to account for the external component (“the rest of the 
universe”), this being inevitably connected and interacting with any kind of evolving system one 
may observe and describe. The interactions proper to the systems meant by the method include also 
the self-interactions, i.e., every interaction internal to each activator of the system. However, no 
survey can detect and measure the self-interaction of the “external component”, whereas 
interactions between the external component and the other components of the system are in general 
detectable and measurable. Nonetheless, the theory expounded in this paper indicates a logical 
procedure by which the likely self-interaction inherent in the specific “external component” relative 
to the studied system can be calculated. It is the theoretical achievement that allows the analyst to 
try simulations of the system’s evolution as it can be expected on the basis of the available data. 

 
An indefinite number of different evolution processes may originate from every standing state of 

the studied system, depending on the features of the initial phases observed or hypothesized. 
Whereas, once the initial phase has been identified, the respective possible evolution cycle remains 
univocally determined.  

The conclusion of each cycle, instead, depends on the analyst’s choice: It may entail either a new 
standing state, achieved by the system after a transformation of its configuration and structure, or 
the system’s disbandment because of impossible solutions to the equations of the evolution cycle. 
The analyst’s choice accounts – in particular – for the phase parameters that characterize the last 
actual phase of the cycle in which the equation solutions are positive numbers.  

 
“Mutations” in the system may also occur, when the system’s size changes either because of new 

emerging components that join the exiting ones or because of components that disappear from the 
system for a reason whatever. In particular, the emergence of new components or the disappearance 
of existing ones may occur when the system approaches the maximum syntropy, or the maximum 
entropy, respectively, relevant to the system’s size. Mutations do always entail modifications of the 
system’s size, i.e., changes in the number of the system’s differentiated components and, therefore, 
also in the system’s transformation potential. 

 
 

6.1.2 Experiencing applications of the method 
 
So far, there have been not many opportunities for applying the method to real situations, mainly 

because most applications of this method need to be based on direct surveys, which, especially in 
the field of urban and regional planning (that is my own field of professional practice) take 
relatively long time and very high implementation costs. 

I can however mention a few important applications that have been useful both for suggesting 
response to real problems and for improving the method.  

 
An early application of the method took place in Libya to analyse the possible impact on the 

overall development of Tripoli metropolitan area to be expected in consequence of the 
implementation of a large project of urban renewal of the city centre. The method had to use – and 
to adjust to – secondary data collected in preceding years by other experts for the preparation of a 
transportation plan for the city.43 

                                                            
43 Traffic Flow System and Development Hypotheses for the Urban Area of Tripoli, Sviluppo Tecnica 
SpA, Rome, 1984 
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The first noticeable test undergone by the method had to regard the plan for a convenient 
expansion process concerning the urban area of Malang, a city of East Java (Indonesia).44  On that 
occasion, the application of the method was preceded by a survey on the daily all-purpose trips 
made by the city population and vehicles, as well as by people and vehicles from/towards 
surrounding regional areas in different times of an “average day” of activity. The method was used 
to process the survey findings and other secondary data with a view to probing by simulations the 
possible effects to be expected in consequence of the implementation of various planning choices 
hypothesized. 

 
A major experience was made regarding the preparation of a strategic plan for the development 

of Surabaya metropolitan region (Indonesia), which entailed surveys on the regional transportation 
system and the use of the regional input-output economic matrix. This application of the method 
was carried out during a period of grave economic and political crisis that hit Indonesia and other 
South-East Asian countries45. 

 
Another major and high challenging opportunity for an application of the method was the 

evaluation of the possible impact caused by the implementation of the Metropolitan Medan Urban 
Development Project. It was a laborious work that had to avail itself of several special surveys on 
the field, followed by an onerous activity of data processing, all resulting in a technical report that 
consisted of six heavy volumes.46 The applied methodology was adopted by the Asian Development 
Bank (the project financing institute) as a standard reference for all analogous cases.  

 
 

6.2 Theory as model 
 
Together with the definition of system, the theory expounded in this paper introduces a definition 

of syntropy as quantity complementary to entropy, the latter considered as the amount of disorder 
and/or confusion-uncertainty that affects the system’s activity under observation. 

Starting from a theoretical maximum level H = 2lnN of possible disorder, which depends on the 
size N of the system and marks the boundary level at which no system can be recognized, any lower 
level E of disorder (entropy) implies a degree of order, which is just the condition that allows an 
observer to recognize the existence of a system whatever.  

The “balance S.” of “missing disorder” is assumed to be the degree of order or organization 
dubbed “syntropy” of the system.  

Syntropy S represents the variable amount of disorder that the system’s activity subtracts from 
chaos; so that – by definition – sum  E+S.=.H is a constant quantity relative to the system 
considered.  

Then it is also clear that the order-organization may be increased by the system’s activity 
through a continued increase in the balance of missing disorder subtracted from the relevant 

                                                            
44 Simulation of Malang Physical Growth, in co-operation with computer programmer Silvano Pellecchia 
(within the preparation of the Malang Urban Development Programme), C. Lotti & Ass., on behalf of 
BAPPEDA Malang, 1994-1995 
45 - Towards a Policy for the Regional Development,  and   
   - Suggestions for Anti-crisis Initiatives (The Socio-economic Promotion Role of Urban Primary 
Activities and Services), BCEOM Consultants at the UMU 
     BAPPEDA, , Surabaya 1996-1998 
46 In particular, concerning the performance philosophy, the volume Model Proposed by the Logical 
Framework Approach, Metropolitan Medan Urban Development Project, GKW Consult on behalf of the 
Ministry of Settlements and Regional Infrastructure, Jakarta, 2003-2004 
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extreme amount H. This quantity, which represents for the system the potential disorder at which 
the system disappears from observation, represents also the transformation potential that establishes 
the theoretical organization extreme that the system can achieve. 

The system’s “activators” are supposed to be motivated to interact by the main – though not 
exclusive – purpose of increasing the system’s organization, since the theory shows that the 
“rewarding” for the system’s activators is – on an average – coincident with the system’s syntropy 
S. 

The evolution process described by the proposed simulation model is the development of 
activities generated by a system of expectations (the intents), which tend to be conservative, but are 
necessarily modified, because of the feedback effects associated with the interactions’ mutual 
influence, i.e., by the development itself of the system’s overall activity, which is expressed just by 
the interaction configuration.  

The evolution develops by transformation cycles, each starting from a (supposed) condition of 
precarious equilibrium (standing state). Once a cycle is concluded by a transformation of both 
structure and configuration, a new unstable equilibrium is achieved by the system: This enters a 
novel standing state from which, unpredictably, a new transformation cycle can start. In the same 
way, a sequence of further cycles can follow. 

If, at a certain point in the evolution, the transformation of the system’s structure does not occur 
to adapt the set of intents-expectations to the emerging state of the system, then – at the conclusion 
of the failed transformation cycle – the system exits from the area of conventional reality. It should 
mean that the system’s structure cannot bear the load of the changes that appear necessary to keep 
the system alive.      

     
Looking at the definitions of entropy and syntropy and to the simulation exercises, it is easy to 

observe that higher levels of syntropy implies higher levels of inequality - between the system’s 
components - in terms of activity concentration. In other words, the higher the differentiation 
between the level of activity of the system’s components the higher is the degree (S) of organization 
that “rewards” the system. This merely logical fact might induce political remarks concerning the 
reliability of the theory, if this purports to be applicable also to socio-economic systems. 
Nevertheless, should socio-economic systems be addressed by application of the method suggested 
here, the theory would appear to be closer to real situations than different political visions are.  

Hierarchy levels in organized systems of activities are as natural as profitable. In this 
connection, consider, as a major example, the formation of systems of interdependent specialized 
activities through which cities, civilizations and – especially – contemporary societies could emerge 
and develop. Obviously, there are aspects of hierarchical organization in human societies that are 
neither natural nor spontaneous, because imposed by force. It is the case, for example, of societies 
ruled by dictatorial regimes. (In the least primitive of such regimes, profitable development shared 
by a large part of the relevant population is still possible, though the opposite seems to be rather a 
frequent case)47. However, in most theories and models formulated to study complex systems, the 
spontaneous formation and evolution of the systems is a basic assumption, to the extent to which 
most of the activators (agents) of such systems are supposed not to be subjected to a central control.  

Thus, should my theory inappropriately be considered as a possible model of the macro-
functioning of human societies, an implication of the foregoing observations is that any self-
organized human society is necessarily affected by inequalities, which differentiate groups of 

                                                            
47 Economic liberty is not necessarily associated with democracy, which in some cases suffers from heavy 
bureaucracy and corruption or “dogmatic” norms of a religious origin. Authoritarian regimes, in which the 
political power is not democratically shared, do not necessarily entail lack of economic freedom or absence 
of spontaneous incentives to free private entrepreneurial initiative. 
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members from one another not only according to the respective social roles and functions, but – 
inevitably – also according to the re-distribution of the system’s syntropy equivalent, i.e., in the 
distribution of the benefits coming from the system’s overall activity.  

Albeit unpleasant as it can be, and irrespective of the theory I have expounded in this paper, it is 
the general condition in which human societies form and develop: Inequality in itself seems even to 
be the indispensable engine of development.  

Accounting for historical experience, it seems highly improbable that equality could co-exist 
with development. Inspired political visions might suggest that such a co-existence is desirable and 
possible. Particularly concerning the equitable distribution of the resources produced by the 
activities of any highly organized human society, I doubt there are persuasive theoretical or 
practical proofs that the co-existence is possible and beneficial. 

Theories of macro-economy are rather reluctant to deal with equitability, preferring instead to 
address theorems about market-production-economic equilibriums, though “equilibriums” seem 
even more utopian than equitability, since they are apparently denied by the observed socio-
economic development processes. Indeed, I deem that the most realistic aspect, if any such aspect 
may be recognized in my theory as “model”, is just the proved impossibility of permanent 
equilibriums in complex self-organized and evolving systems. The concept of stability formulated 
by the theory refers just to the probability for a system to remain in its present state. 

 
An image of acceptable and possible socio-economic development could be provided by a 

special reshaping and reading of the graphical curve drafted by economist Lorenz to represent the 
resource distribution within a social system. “Lorenz curve” is shown below by Figure 6.1: 

  
Figure 6.1 

 

 

                                 
This diagram represents the concentration of resources produced in a hypothetical country, 

according to the geometrical curve L suggested by economist M. O. Lorenz.  In the case 
represented, 50% of the country’s population enjoys only 15% of the overall national income; 90% 
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of the population enjoys 50% of the national total income, while the remaining 50% income is 
enjoyed by only 10% of the total population.  

The straight line segment OV represents the ideal situation in which the resource distribution is 
perfectly equitable, the income distribution being quite uniform among the country’s population. As 
known, no such a situation has ever been observed. Thus, the distance of line L from straight line 
OV is an indication of the concentration of the resources: the greater the distance the higher the 
concentration. 

According to an interpretation of the theory expounded in the preceding chapters, a higher 
concentration of the benefits coming from the system’s overall activity is associated both with a 
higher efficiency of the system’s organization and with a higher level of the average benefit coming 
from the system’s activity.  

Lorenz curve might not be sufficient to represent the situation concerning the actual benefit 
distribution among the population of any country, in that the curve shows a relation between two 
percentage scales, hiding what happens – for example – if the population percentage is related to the 
distribution of the absolute value of the total national income.  

In this connection, suppose now that, instead of percent values, the axis of ordinates of the 
diagram in Figure 6.1 measures the absolute value of the national income in two different 
situations; the first relevant to year 2020, when the national income amounts to one thousand billion 
euros, the second relative to year 2024, in which the national income is raised to 2,155 billion euros 
(in real terms with respect to the purchasing power of 2020), as represented by the following 
graph: 

 
Figure 6.2 

 

 

This diagram shows how it could be possible to observe an economic development in which the 
benefit concentration increases with the total resources produced, while raising also (from 20% to 
28%) the population percentage that can share – at constant prices – twice the amount of the lower 
benefits enjoyed four years before (700 billion euros instead of 350; i.e., on an average, 25 billion 
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euros per each 1% population instead of the previous 17.5 billion euros); though the absolute value 
of the lower benefit section constitutes now a lower percentage of the total national income with 
respect to the previous percentage (32.5% instead of 35%). 

The graphical scheme of Figure 6.2 represents the possibility of a noticeable improvenent 
(+42.8% on average) to the status of the poorer population, along with a marked increase in the 
inequality that characterizes the social system represented. In year 2024, in particular, the 20% 
reacher population enjoyes a larger portion (~43%) of the overall resources with respect to that 
(~35%) enjoyed by the 20% reacher population of four years before. 

This kind of graphical scheme may be drafted in a variety of shapes, according to different 
possible cases, and may in general be considered as expressive of real socio-economic development 
processes observed. 

 
 

6.3 The trouble with knowledge 
 
In approching the closing of this final chapter, it seems worth making a digression, which is in 

my view motivated by the worldwide diffusion of an embarassing way of speaking and thinking of 
science. 

It would be instructive to pay attention to the history of the scientific development occurred 
during the last eighty-ninety years.  

An emerging tendency to privilege abstract mathematical theories with respect to 
experimentation has in particular characterized areas of physics and cosmology, after the amazing 
favour encountered by Einstein’s General Relativity and by quantum physics.  

As to cosmology, branches of this discipline have since long entered a sophisticated 
mathematical delirium, which impels a number of theories to stubbornly survive against 
observational evidence.  

As to physics, under an unprecedented pressure exerted by numerous clubs of academic theorists 
dealing with sub-atomic worlds, quite abstract and arbitrary theories have given rise to hyper-costly 
experimentation projects aimed at bending experience to abstract theoretical expectations. All this, 
in the opinion of a few scientists, has had a bad influence on crowds of brilliant theoretical 
researchers that work in quite different fields: One of which is naturally the world of complex 
systems, from biology to economics, without excluding politics.48 

The sin is not so much in the degree of abstraction of the theories regarded, but in enforcing the 
belief that just that is the correct path to scientific knowledge; i.e., the belief that the events of the 
real world outside there can or must by all means be bent to the dictate of the theories, especially 
when these are not built upon any sound experimental ground.  

As the entire world has recently experienced, the most dangerous mythology, by which most 
entrepreneurs and politicians have been and still are ill charmed, gravitates about theories of 
economics, sociology and finance. 

Concerning economics, Ormerod wrote: 

                                                            
48  Just a few references: Concerning the state of physics see L. Oldershaw, The new physics – Physical or 
mathematical science?, American Journal of Physics, 56,1075, 1988; D. Lingley, The End of Physics, Basic 
Books, New York 1993; L. Smolin, The Trouble with Physics, Houghton Mifflin, New York 2006; P. Voit, 
Not Even Wrong, Basic Books, New York 2006.  
Concerning texts that testimony to the mess that, in particular, characterizes macro-economics, see for 
instance: M. Friedman, Have monetary policies failed?, American Review, LXII, 1972; P. Ormerod, The 
Death of Economics, St. Martin’s Press, London-New York 1994; J. Stiglitz, Freefall: America, Free 
Markets and The Sinking of World Economy, W. W. Norton & Co., New York 2010. 
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“The orthodoxy of the economics is such that this subject is taught at the universities as a series 
of discovered truths 49 concerning how the economic world is really working. As a matter of fact, 
no science could boast such a claim. [ …] It is not the use of mathematics in itself that leads 
orthodox economists along the erroneous path, but rather their ambition to compete with the 
authority of physics, by jointly considering the world as a well running machine. Such an erroneous 
view has demanded the service of mathematical instruments and methods”. 

 
Later, in 1998, fascinated by a non-deterministic model formulated by economist Alan Kirman 

concerning the consumer behavior with respect to a particular good,50 the same Ormerod changed 
his mind (as any reader may understand) with a paper in which he purports to have found the 
appropriate explanation for (almost) every aspect of the mankind’s behavior: 

“The ideas I advance in this paper demand the use of far modern mathematics than in the case of 
conventional economics, which remains fixated with the maths of nineteeth-century engineers”.51 

 
Thus, it seems that in Ormerod’s opinion the weak point of conventional economics does not so 

much reside in an imitation of physics, i.e., in the pretence of explaining the world by use of 
mathematical instruments, but rather in the kind of mathematics economists use. Ormerod considers 
conventional economics as an old-fashioned instrument, like many might consider “mechanistic” 
physics. Perhaps, in Ormerod’s view the new economics he proposes and supports should somehow 
be viewed as the analogous of indeterministic physics or of the relevant philosophical approach to 
the general socio-economic reality. Is then Ormerod’s general representation of the world “more 
scientific” than the preceding ones just for he shows how to process basic assumptions by means of 
a “far modern” mathematics?  

Besides, the reader interested in any profitable study of complex systems might be impressed by 
Ormerod’s verbosity, typical of the 20th century’s philosophers, rather than by Ormerod’s 
inclination for new mathematical instruments. The simple basic scheme of the model he adopts is 
certainly an interesting and legitimate methodological option, especially if his theory, beyond 
mathematial formulas, propose viable examples or ways of objectively useful applications. Until 
such applications are repeatedly and satifactorily tested on the field, his “general theory of the world 
society and economy” remains only one of the more or less beautiful explanations for everything, 
offered to the public attention in an idle competition with a host of other metaphysical theories and 
religions. 

 
 

                                                            
49 The Italic font is in the original text, The Death of Economics, op. cit., pp. 28 and 125. 
50 Kirman’s model, which concerns fish market, is recalled in a recent book of this author, Complex 
Economics. Individual and Collective, Routledge, New York 2011 
51 P. Ormerod, Butterfly Economics. A General Theory of Social and Economic Behavior, Faber & Faber 
Ltd., London 1998, Introduction, p. X 
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Closing 
 
Despite all possible criticisms, the profound pulsion to find justifiable explanations for the 

myriad of complex events that condition human lifes, as well as the unceasing quest for effective 
instruments to control such events, remain unrenounceable human aspirations, which not only must 
be respected and admired but also encouraged to manifest in any reasonable way.  

However, we should never lose the awareness that pre-selected theoretical options, cultural 
formation and prejudices do always bias the way in which we tend to represent the reality we 
observe, even when our basic purpose is to avoid any reference to particular philosophical criteria 
or principles. Representation is necessarily simplification, as positive science has taught us usefully. 
The problem is what and how can usefully be simplified. 

Yet, I do believe that the fate of our knowledge would even worsen if theories and models 
concerning the behaviour of human societies, instead of striving for simplification, could identify, 
assess and incorporate all the imaginable variables and parameters that we consider as important: 
An insoluble problem would arise, because of the impossibility to establish in principle the 
unquestionable way in which we shall put so many variables and parameters in relation with each 
other.  

An attempt of that sort was made by the Club of Rome in years Seventy to predict the evolution 
and fate of the mankind, but – as known – the attempt failed. The connections between the very 
many variables were established by deterministic criteria following Forrester’s school52 of thought 
and by the adoption of substantially arbitrary parameters, which proved inadequate.53 Attempts of a 
very similar kind, partially connected with the activities of the Club of Rome, regard another group 
of complex systems, which are addressed by the models of ecosystems aimed at predicting the 
destiny of our planet’s climate and much more. The enjoyable result of such efforts consists in a 
remarkable confusion (strongly and obviously denied by the model builders), according to which 
almost anything – and the relevant opposite – may be predicted. 

 
From another side of our contemporary world, a host of super-skilled magnificent experts in 

computational languages have persuaded many serious scholars that computers and computer 
games can profitably replace laboratory and on-the-field experimentation, especially to the benefit 
of those disciplines that are actually excluded from viable and replicable experimental procedures.  

On the one hand, undoubtely, most games are important sources of knowledge since the first 
days of each individual life. Contemporary sophisticated games and simulations carried out by the 
aid of computers are often an effective means to accustom humans with major unusual aspects of 

                                                            
52  Jay W. Forrester (1919) is considered as the “father” of Systems Dynamics; is the author of many papers 
and books on systems dynamics, starting from 1961 to date. His book Urban Dynamics, Pegasus 
Communications, MIT Cambridge 1969, is of a particular interest. “System dynamics is a professional field 
that deals with the complexity of systems. System dynamics is the necessary foundation underlying effective 
thinking about systems. System dynamics deals with how things change through time, which covers most of 
what most people find important. System dynamics involves interpreting real life systems into computer 
simulation models that allow one to see how the structure and decision-making policies in a system create its 
behaviour”, from System Dynamics: the Foundation under Systems Thinking, MIT, Cambridge, June 
1999. 
53 Club of Rome, The Limits to Growth, 1972 ISC Annual Management Symposium in S. Gallen. Prepared 
mainly by Donella and Dennis Meadows, it is a model of the world development that consists of about 
thousand equations formulated according to the principles and criteria proper to the “system dynamics” 
thaught by Jay Forrester.  The model was followed in 1973-1974 by another one of the same nature, prepared 
by E. Pestel and M. Mesarovic, adopted by the Club of Rome with the title The Mankind at a Turning 
Point, which allows for about two hundred thousand (sic!) equations. 
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important technological and scientific activities, though such games and simulations can work well 
as training activities, certainly not as scientific instruments for exploring the “unknown reality”.  

On the other hand, if it is to any extent significant and useful availing oneself of computerized 
simulations that obey rigorous, tested or testable theories of positive science or logic, there is 
instead to seriously question the service rendered to the progress of effective knowledge by what is 
only playing computerized games, which both imitate the real world at will, and still at will produce 
pictures of imaginary worlds by means of quite special computer performances. 

I do not know how many of us are aware of the cultural, social and political risks we incur by 
replacing Middle-Age myths and rites with the computational ones of the present time.  

 
 
 


